Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfaddlem2 Structured version   Visualization version   GIF version

Theorem smfaddlem2 43047
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfaddlem2.x 𝑥𝜑
smfaddlem2.s (𝜑𝑆 ∈ SAlg)
smfaddlem2.a (𝜑𝐴𝑉)
smfaddlem2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfaddlem2.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfaddlem2.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfaddlem2.7 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfaddlem2.r (𝜑𝑅 ∈ ℝ)
smfaddlem2.k 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
Assertion
Ref Expression
smfaddlem2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑥   𝐵,𝑝,𝑞   𝐶,𝑝,𝑞,𝑥   𝐷,𝑝,𝑞   𝐾,𝑞,𝑥   𝑅,𝑝,𝑞   𝑆,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐾(𝑝)   𝑉(𝑥,𝑞,𝑝)

Proof of Theorem smfaddlem2
StepHypRef Expression
1 smfaddlem2.x . . 3 𝑥𝜑
2 smfaddlem2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3 smfaddlem2.d . . 3 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
4 smfaddlem2.r . . 3 (𝜑𝑅 ∈ ℝ)
5 smfaddlem2.k . . 3 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
61, 2, 3, 4, 5smfaddlem1 43046 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
7 smfaddlem2.s . . . 4 (𝜑𝑆 ∈ SAlg)
8 smfaddlem2.a . . . . 5 (𝜑𝐴𝑉)
9 elinel1 4175 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
109adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
111, 10ssdf 41345 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
128, 11ssexd 5231 . . . 4 (𝜑 → (𝐴𝐶) ∈ V)
13 eqid 2824 . . . 4 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
147, 12, 13subsalsal 42649 . . 3 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
15 qct 41636 . . . 4 ℚ ≼ ω
1615a1i 11 . . 3 (𝜑 → ℚ ≼ ω)
1714adantr 483 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝑆t (𝐴𝐶)) ∈ SAlg)
18 qex 12363 . . . . . . 7 ℚ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → ℚ ∈ V)
205a1i 11 . . . . . . . 8 (𝜑𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}))
2118rabex 5238 . . . . . . . . 9 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V
2221a1i 11 . . . . . . . 8 ((𝜑𝑝 ∈ ℚ) → {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V)
2320, 22fvmpt2d 6784 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
24 ssrab2 4059 . . . . . . 7 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ⊆ ℚ
2523, 24eqsstrdi 4024 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ⊆ ℚ)
26 ssdomg 8558 . . . . . 6 (ℚ ∈ V → ((𝐾𝑝) ⊆ ℚ → (𝐾𝑝) ≼ ℚ))
2719, 25, 26sylc 65 . . . . 5 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ℚ)
2815a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℚ) → ℚ ≼ ω)
29 domtr 8565 . . . . 5 (((𝐾𝑝) ≼ ℚ ∧ ℚ ≼ ω) → (𝐾𝑝) ≼ ω)
3027, 28, 29syl2anc 586 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ω)
31 inrab 4278 . . . . 5 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
3214ad2antrr 724 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑆t (𝐴𝐶)) ∈ SAlg)
33 nfv 1914 . . . . . . . . 9 𝑥 𝑝 ∈ ℚ
341, 33nfan 1899 . . . . . . . 8 𝑥(𝜑𝑝 ∈ ℚ)
35 nfv 1914 . . . . . . . 8 𝑥 𝑞 ∈ (𝐾𝑝)
3634, 35nfan 1899 . . . . . . 7 𝑥((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝))
377ad2antrr 724 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑆 ∈ SAlg)
3810, 2syldan 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
3938ad4ant14 750 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
40 smfaddlem2.m . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
417, 40, 11sssmfmpt 43034 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4241ad2antrr 724 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
43 qre 12356 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 ∈ ℝ)
4443ad2antlr 725 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑝 ∈ ℝ)
4536, 37, 39, 42, 44smfpimltmpt 43030 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∈ (𝑆t (𝐴𝐶)))
46 elinel2 4176 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
4746adantl 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
4847, 3syldan 593 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
4948ad4ant14 750 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
50 smfaddlem2.7 . . . . . . . . 9 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
511, 47ssdf 41345 . . . . . . . . 9 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
527, 50, 51sssmfmpt 43034 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5352ad2antrr 724 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5443ssriv 3974 . . . . . . . 8 ℚ ⊆ ℝ
5525sselda 3970 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℚ)
5654, 55sseldi 3968 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℝ)
5736, 37, 49, 53, 56smfpimltmpt 43030 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞} ∈ (𝑆t (𝐴𝐶)))
5832, 45, 57salincld 42642 . . . . 5 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) ∈ (𝑆t (𝐴𝐶)))
5931, 58eqeltrrid 2921 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6017, 30, 59saliuncl 42614 . . 3 ((𝜑𝑝 ∈ ℚ) → 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6114, 16, 60saliuncl 42614 . 2 (𝜑 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
626, 61eqeltrd 2916 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wnf 1783  wcel 2113  {crab 3145  Vcvv 3497  cin 3938  wss 3939   ciun 4922   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  ωcom 7583  cdom 8510  cr 10539   + caddc 10543   < clt 10678  cq 12351  t crest 16697  SAlgcsalg 42600  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cc 9860  ax-ac2 9888  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-omul 8110  df-er 8292  df-map 8411  df-pm 8412  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-acn 9374  df-ac 9545  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-ioo 12745  df-ico 12747  df-rest 16699  df-salg 42601  df-smblfn 42985
This theorem is referenced by:  smfadd  43048
  Copyright terms: Public domain W3C validator