Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfaddlem2 Structured version   Visualization version   GIF version

Theorem smfaddlem2 40305
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfaddlem2.x 𝑥𝜑
smfaddlem2.s (𝜑𝑆 ∈ SAlg)
smfaddlem2.a (𝜑𝐴𝑉)
smfaddlem2.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfaddlem2.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfaddlem2.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfaddlem2.7 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfaddlem2.r (𝜑𝑅 ∈ ℝ)
smfaddlem2.k 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
Assertion
Ref Expression
smfaddlem2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑥   𝐵,𝑝,𝑞   𝐶,𝑝,𝑞,𝑥   𝐷,𝑝,𝑞   𝐾,𝑞,𝑥   𝑅,𝑝,𝑞   𝑆,𝑝,𝑞   𝜑,𝑝,𝑞
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐾(𝑝)   𝑉(𝑥,𝑞,𝑝)

Proof of Theorem smfaddlem2
StepHypRef Expression
1 smfaddlem2.x . . 3 𝑥𝜑
2 smfaddlem2.b . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3 smfaddlem2.d . . 3 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
4 smfaddlem2.r . . 3 (𝜑𝑅 ∈ ℝ)
5 smfaddlem2.k . . 3 𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
61, 2, 3, 4, 5smfaddlem1 40304 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} = 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)})
7 smfaddlem2.s . . . 4 (𝜑𝑆 ∈ SAlg)
8 smfaddlem2.a . . . . 5 (𝜑𝐴𝑉)
9 elinel1 3782 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
109adantl 482 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
111, 10ssdf 38765 . . . . 5 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
128, 11ssexd 4770 . . . 4 (𝜑 → (𝐴𝐶) ∈ V)
13 eqid 2621 . . . 4 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
147, 12, 13subsalsal 39910 . . 3 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
15 qct 39073 . . . 4 ℚ ≼ ω
1615a1i 11 . . 3 (𝜑 → ℚ ≼ ω)
1714adantr 481 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝑆t (𝐴𝐶)) ∈ SAlg)
18 qex 11752 . . . . . . 7 ℚ ∈ V
1918a1i 11 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → ℚ ∈ V)
205a1i 11 . . . . . . . 8 (𝜑𝐾 = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅}))
2118rabex 4778 . . . . . . . . 9 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V
2221a1i 11 . . . . . . . 8 ((𝜑𝑝 ∈ ℚ) → {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ∈ V)
2320, 22fvmpt2d 6255 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅})
24 ssrab2 3671 . . . . . . 7 {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑅} ⊆ ℚ
2523, 24syl6eqss 3639 . . . . . 6 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ⊆ ℚ)
26 ssdomg 7953 . . . . . 6 (ℚ ∈ V → ((𝐾𝑝) ⊆ ℚ → (𝐾𝑝) ≼ ℚ))
2719, 25, 26sylc 65 . . . . 5 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ℚ)
2815a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℚ) → ℚ ≼ ω)
29 domtr 7961 . . . . 5 (((𝐾𝑝) ≼ ℚ ∧ ℚ ≼ ω) → (𝐾𝑝) ≼ ω)
3027, 28, 29syl2anc 692 . . . 4 ((𝜑𝑝 ∈ ℚ) → (𝐾𝑝) ≼ ω)
31 inrab 3880 . . . . 5 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)}
3214ad2antrr 761 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑆t (𝐴𝐶)) ∈ SAlg)
33 nfv 1840 . . . . . . . . 9 𝑥 𝑝 ∈ ℚ
341, 33nfan 1825 . . . . . . . 8 𝑥(𝜑𝑝 ∈ ℚ)
35 nfv 1840 . . . . . . . 8 𝑥 𝑞 ∈ (𝐾𝑝)
3634, 35nfan 1825 . . . . . . 7 𝑥((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝))
377ad2antrr 761 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑆 ∈ SAlg)
3810, 2syldan 487 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
3938ad4ant14 1290 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
40 smfaddlem2.m . . . . . . . . 9 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
417, 40, 11sssmfmpt 40292 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4241ad2antrr 761 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
43 qre 11745 . . . . . . . 8 (𝑝 ∈ ℚ → 𝑝 ∈ ℝ)
4443ad2antlr 762 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑝 ∈ ℝ)
4536, 37, 39, 42, 44smfpimltmpt 40288 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∈ (𝑆t (𝐴𝐶)))
46 elinel2 3783 . . . . . . . . . 10 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
4746adantl 482 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
4847, 3syldan 487 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
4948ad4ant14 1290 . . . . . . 7 ((((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
50 smfaddlem2.7 . . . . . . . . 9 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
511, 47ssdf 38765 . . . . . . . . 9 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
527, 50, 51sssmfmpt 40292 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5352ad2antrr 761 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
5443ssriv 3591 . . . . . . . 8 ℚ ⊆ ℝ
5525sselda 3587 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℚ)
5654, 55sseldi 3585 . . . . . . 7 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → 𝑞 ∈ ℝ)
5736, 37, 49, 53, 56smfpimltmpt 40288 . . . . . 6 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞} ∈ (𝑆t (𝐴𝐶)))
5832, 45, 57salincld 39903 . . . . 5 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 < 𝑝} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 < 𝑞}) ∈ (𝑆t (𝐴𝐶)))
5931, 58syl5eqelr 2703 . . . 4 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ (𝐾𝑝)) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6017, 30, 59saliuncl 39875 . . 3 ((𝜑𝑝 ∈ ℚ) → 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
6114, 16, 60saliuncl 39875 . 2 (𝜑 𝑝 ∈ ℚ 𝑞 ∈ (𝐾𝑝){𝑥 ∈ (𝐴𝐶) ∣ (𝐵 < 𝑝𝐷 < 𝑞)} ∈ (𝑆t (𝐴𝐶)))
626, 61eqeltrd 2698 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wnf 1705  wcel 1987  {crab 2911  Vcvv 3189  cin 3558  wss 3559   ciun 4490   class class class wbr 4618  cmpt 4678  cfv 5852  (class class class)co 6610  ωcom 7019  cdom 7905  cr 9887   + caddc 9891   < clt 10026  cq 11740  t crest 16013  SAlgcsalg 39861  SMblFncsmblfn 40242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cc 9209  ax-ac2 9237  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-omul 7517  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-acn 8720  df-ac 8891  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-n0 11245  df-z 11330  df-uz 11640  df-q 11741  df-ioo 12129  df-ico 12131  df-rest 16015  df-salg 39862  df-smblfn 40243
This theorem is referenced by:  smfadd  40306
  Copyright terms: Public domain W3C validator