Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfconst Structured version   Visualization version   GIF version

Theorem smfconst 43025
Description: Given a sigma-algebra over a base set X, every partial real-valued constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfconst.x 𝑥𝜑
smfconst.s (𝜑𝑆 ∈ SAlg)
smfconst.a (𝜑𝐴 𝑆)
smfconst.b (𝜑𝐵 ∈ ℝ)
smfconst.f 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
smfconst (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfconst
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfconst.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 nfmpt1 5163 . . 3 𝑥(𝑥𝐴𝐵)
31, 2nfcxfr 2975 . 2 𝑥𝐹
4 nfv 1911 . 2 𝑎𝜑
5 smfconst.s . 2 (𝜑𝑆 ∈ SAlg)
6 smfconst.a . 2 (𝜑𝐴 𝑆)
7 smfconst.x . . 3 𝑥𝜑
8 smfconst.b . . . 4 (𝜑𝐵 ∈ ℝ)
98adantr 483 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
107, 9, 1fmptdf 6880 . 2 (𝜑𝐹:𝐴⟶ℝ)
11 nfv 1911 . . . . . . . 8 𝑥 𝑎 ∈ ℝ
127, 11nfan 1896 . . . . . . 7 𝑥(𝜑𝑎 ∈ ℝ)
13 nfv 1911 . . . . . . 7 𝑥 𝐵 < 𝑎
1412, 13nfan 1896 . . . . . 6 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎)
158ad2antrr 724 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
16 simpr 487 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎)
1714, 15, 1, 16pimconstlt1 42982 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = 𝐴)
18 eqidd 2822 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴)
19 sseqin2 4191 . . . . . . . 8 (𝐴 𝑆 ↔ ( 𝑆𝐴) = 𝐴)
206, 19sylib 220 . . . . . . 7 (𝜑 → ( 𝑆𝐴) = 𝐴)
2120eqcomd 2827 . . . . . 6 (𝜑𝐴 = ( 𝑆𝐴))
2221ad2antrr 724 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = ( 𝑆𝐴))
2317, 18, 223eqtrd 2860 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ( 𝑆𝐴))
245ad2antrr 724 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg)
255uniexd 7467 . . . . . . 7 (𝜑 𝑆 ∈ V)
2625, 6ssexd 5227 . . . . . 6 (𝜑𝐴 ∈ V)
2726ad2antrr 724 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V)
2824salunid 42635 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆𝑆)
29 eqid 2821 . . . . 5 ( 𝑆𝐴) = ( 𝑆𝐴)
3024, 27, 28, 29elrestd 41372 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ( 𝑆𝐴) ∈ (𝑆t 𝐴))
3123, 30eqeltrd 2913 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
32 nfv 1911 . . . . . 6 𝑥 ¬ 𝐵 < 𝑎
3312, 32nfan 1896 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎)
348ad2antrr 724 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
35 rexr 10686 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635ad2antlr 725 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*)
37 simpr 487 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎)
38 simplr 767 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ)
3938, 34lenltd 10785 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎𝐵 ↔ ¬ 𝐵 < 𝑎))
4037, 39mpbird 259 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎𝐵)
4133, 34, 1, 36, 40pimconstlt0 42981 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ∅)
42 eqid 2821 . . . . . . 7 (𝑆t 𝐴) = (𝑆t 𝐴)
435, 26, 42subsalsal 42641 . . . . . 6 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
44430sald 42632 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐴))
4544ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆t 𝐴))
4641, 45eqeltrd 2913 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
4731, 46pm2.61dan 811 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
483, 4, 5, 6, 10, 47issmfdf 43013 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1533  wnf 1780  wcel 2110  {crab 3142  Vcvv 3494  cin 3934  wss 3935  c0 4290   cuni 4837   class class class wbr 5065  cmpt 5145  cfv 6354  (class class class)co 7155  cr 10535  *cxr 10673   < clt 10674  cle 10675  t crest 16693  SAlgcsalg 42592  SMblFncsmblfn 42976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-ioo 12741  df-ico 12743  df-rest 16695  df-salg 42593  df-smblfn 42977
This theorem is referenced by:  smfmbfcex  43035  smfmulc1  43070
  Copyright terms: Public domain W3C validator