Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfconst Structured version   Visualization version   GIF version

Theorem smfconst 39440
Description: A constant function is measurable. Proposition 121E (a) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfconst.x 𝑥𝜑
smfconst.s (𝜑𝑆 ∈ SAlg)
smfconst.a (𝜑𝐴 𝑆)
smfconst.b (𝜑𝐵 ∈ ℝ)
smfconst.f 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
smfconst (𝜑𝐹 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfconst
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfconst.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 nfmpt1 4669 . . 3 𝑥(𝑥𝐴𝐵)
31, 2nfcxfr 2748 . 2 𝑥𝐹
4 nfv 1829 . 2 𝑎𝜑
5 smfconst.s . 2 (𝜑𝑆 ∈ SAlg)
6 smfconst.a . 2 (𝜑𝐴 𝑆)
7 smfconst.x . . 3 𝑥𝜑
8 smfconst.b . . . 4 (𝜑𝐵 ∈ ℝ)
98adantr 479 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
107, 9, 1fmptdf 6279 . 2 (𝜑𝐹:𝐴⟶ℝ)
11 nfv 1829 . . . . . . . 8 𝑥 𝑎 ∈ ℝ
127, 11nfan 1815 . . . . . . 7 𝑥(𝜑𝑎 ∈ ℝ)
13 nfv 1829 . . . . . . 7 𝑥 𝐵 < 𝑎
1412, 13nfan 1815 . . . . . 6 𝑥((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎)
158ad2antrr 757 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
16 simpr 475 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐵 < 𝑎)
1714, 15, 1, 16pimconstlt1 39396 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = 𝐴)
18 eqidd 2610 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = 𝐴)
19 sseqin2 3778 . . . . . . . 8 (𝐴 𝑆 ↔ ( 𝑆𝐴) = 𝐴)
206, 19sylib 206 . . . . . . 7 (𝜑 → ( 𝑆𝐴) = 𝐴)
2120eqcomd 2615 . . . . . 6 (𝜑𝐴 = ( 𝑆𝐴))
2221ad2antrr 757 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 = ( 𝑆𝐴))
2317, 18, 223eqtrd 2647 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ( 𝑆𝐴))
245ad2antrr 757 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆 ∈ SAlg)
255uniexd 38113 . . . . . . 7 (𝜑 𝑆 ∈ V)
2625, 6ssexd 4728 . . . . . 6 (𝜑𝐴 ∈ V)
2726ad2antrr 757 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝐴 ∈ V)
2824salunid 39051 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → 𝑆𝑆)
29 eqid 2609 . . . . 5 ( 𝑆𝐴) = ( 𝑆𝐴)
3024, 27, 28, 29elrestd 38125 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → ( 𝑆𝐴) ∈ (𝑆t 𝐴))
3123, 30eqeltrd 2687 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
32 nfv 1829 . . . . . 6 𝑥 ¬ 𝐵 < 𝑎
3312, 32nfan 1815 . . . . 5 𝑥((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎)
348ad2antrr 757 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝐵 ∈ ℝ)
35 rexr 9941 . . . . . 6 (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*)
3635ad2antlr 758 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ*)
37 simpr 475 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ¬ 𝐵 < 𝑎)
38 simplr 787 . . . . . . 7 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎 ∈ ℝ)
3938, 34lenltd 10034 . . . . . 6 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → (𝑎𝐵 ↔ ¬ 𝐵 < 𝑎))
4037, 39mpbird 245 . . . . 5 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → 𝑎𝐵)
4133, 34, 1, 36, 40pimconstlt0 39395 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} = ∅)
42 eqid 2609 . . . . . . 7 (𝑆t 𝐴) = (𝑆t 𝐴)
435, 26, 42subsalsal 39057 . . . . . 6 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
44430sald 39048 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐴))
4544ad2antrr 757 . . . 4 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → ∅ ∈ (𝑆t 𝐴))
4641, 45eqeltrd 2687 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ ¬ 𝐵 < 𝑎) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
4731, 46pm2.61dan 827 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥𝐴 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐴))
483, 4, 5, 6, 10, 47issmfdf 39428 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wnf 1698  wcel 1976  {crab 2899  Vcvv 3172  cin 3538  wss 3539  c0 3873   cuni 4366   class class class wbr 4577  cmpt 4637  cfv 5790  (class class class)co 6527  cr 9791  *cxr 9929   < clt 9930  cle 9931  t crest 15850  SAlgcsalg 39008  SMblFncsmblfn 39390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cc 9117  ax-ac2 9145  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-acn 8628  df-ac 8799  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-ioo 12006  df-ico 12008  df-rest 15852  df-salg 39009  df-smblfn 39391
This theorem is referenced by:  smfmbfcex  39450  smfmulc1  39485
  Copyright terms: Public domain W3C validator