Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfinflem Structured version   Visualization version   GIF version

Theorem smfinflem 43098
Description: The infimum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (c) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfinflem.m (𝜑𝑀 ∈ ℤ)
smfinflem.z 𝑍 = (ℤ𝑀)
smfinflem.s (𝜑𝑆 ∈ SAlg)
smfinflem.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfinflem.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
smfinflem.g 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfinflem (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfinflem
Dummy variables 𝑚 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfinflem.g . . . 4 𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
21a1i 11 . . 3 (𝜑𝐺 = (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
3 nfv 1915 . . . . 5 𝑛(𝜑𝑥𝐷)
4 smfinflem.m . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 smfinflem.z . . . . . . 7 𝑍 = (ℤ𝑀)
64, 5uzn0d 41706 . . . . . 6 (𝜑𝑍 ≠ ∅)
76adantr 483 . . . . 5 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
8 smfinflem.s . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
98adantr 483 . . . . . . . 8 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
10 smfinflem.f . . . . . . . . 9 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1110ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
12 eqid 2823 . . . . . . . 8 dom (𝐹𝑛) = dom (𝐹𝑛)
139, 11, 12smff 43016 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
1413adantlr 713 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
15 ssrab2 4058 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} ⊆ 𝑛𝑍 dom (𝐹𝑛)
16 smfinflem.d . . . . . . . . . . . 12 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
1716eleq2i 2906 . . . . . . . . . . 11 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1817biimpi 218 . . . . . . . . . 10 (𝑥𝐷𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
1915, 18sseldi 3967 . . . . . . . . 9 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2019adantr 483 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
21 simpr 487 . . . . . . . 8 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍)
22 eliinid 41384 . . . . . . . 8 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2320, 21, 22syl2anc 586 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2423adantll 712 . . . . . 6 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
2514, 24ffvelrnd 6854 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
26 rabidim2 41375 . . . . . . 7 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2718, 26syl 17 . . . . . 6 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
2827adantl 484 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
293, 7, 25, 28infnsuprnmpt 41529 . . . 4 ((𝜑𝑥𝐷) → inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
3029mpteq2dva 5163 . . 3 (𝜑 → (𝑥𝐷 ↦ inf(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
312, 30eqtrd 2858 . 2 (𝜑𝐺 = (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
32 nfv 1915 . . 3 𝑥𝜑
33 fvex 6685 . . . . . . . 8 (𝐹𝑛) ∈ V
3433dmex 7618 . . . . . . 7 dom (𝐹𝑛) ∈ V
3534rgenw 3152 . . . . . 6 𝑛𝑍 dom (𝐹𝑛) ∈ V
3635a1i 11 . . . . 5 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
376, 36iinexd 41407 . . . 4 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
3816, 37rabexd 5238 . . 3 (𝜑𝐷 ∈ V)
3925renegcld 11069 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
40 fveq2 6672 . . . . . . . . . . . 12 (𝑤 = 𝑥 → ((𝐹𝑚)‘𝑤) = ((𝐹𝑚)‘𝑥))
4140breq2d 5080 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4241ralbidv 3199 . . . . . . . . . 10 (𝑤 = 𝑥 → (∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
4342rexbidv 3299 . . . . . . . . 9 (𝑤 = 𝑥 → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
44 nfcv 2979 . . . . . . . . . . 11 𝑤 𝑛𝑍 dom (𝐹𝑛)
45 nfcv 2979 . . . . . . . . . . . 12 𝑥𝑍
46 nfcv 2979 . . . . . . . . . . . . 13 𝑥(𝐹𝑚)
4746nfdm 5825 . . . . . . . . . . . 12 𝑥dom (𝐹𝑚)
4845, 47nfiin 4952 . . . . . . . . . . 11 𝑥 𝑚𝑍 dom (𝐹𝑚)
49 nfv 1915 . . . . . . . . . . 11 𝑤𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
50 nfv 1915 . . . . . . . . . . 11 𝑥𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)
51 nfcv 2979 . . . . . . . . . . . . 13 𝑚dom (𝐹𝑛)
52 nfcv 2979 . . . . . . . . . . . . . 14 𝑛(𝐹𝑚)
5352nfdm 5825 . . . . . . . . . . . . 13 𝑛dom (𝐹𝑚)
54 fveq2 6672 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
5554dmeqd 5776 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
5651, 53, 55cbviin 4964 . . . . . . . . . . . 12 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
5756a1i 11 . . . . . . . . . . 11 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
58 fveq2 6672 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
5958breq2d 5080 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
6059ralbidv 3199 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤)))
61 nfv 1915 . . . . . . . . . . . . . . . 16 𝑚 𝑦 ≤ ((𝐹𝑛)‘𝑤)
62 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑛𝑦
63 nfcv 2979 . . . . . . . . . . . . . . . . 17 𝑛
64 nfcv 2979 . . . . . . . . . . . . . . . . . 18 𝑛𝑤
6552, 64nffv 6682 . . . . . . . . . . . . . . . . 17 𝑛((𝐹𝑚)‘𝑤)
6662, 63, 65nfbr 5115 . . . . . . . . . . . . . . . 16 𝑛 𝑦 ≤ ((𝐹𝑚)‘𝑤)
6754fveq1d 6674 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
6867breq2d 5080 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
6961, 66, 68cbvralw 3443 . . . . . . . . . . . . . . 15 (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤))
7069a1i 11 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑤) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7160, 70bitrd 281 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
7271rexbidv 3299 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤)))
73 breq1 5071 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7473ralbidv 3199 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7574cbvrexvw 3452 . . . . . . . . . . . . 13 (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤))
7675a1i 11 . . . . . . . . . . . 12 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑚𝑍 𝑦 ≤ ((𝐹𝑚)‘𝑤) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7772, 76bitrd 281 . . . . . . . . . . 11 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)))
7844, 48, 49, 50, 57, 77cbvrabcsfw 3926 . . . . . . . . . 10 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
7916, 78eqtri 2846 . . . . . . . . 9 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑤)}
8043, 79elrab2 3685 . . . . . . . 8 (𝑥𝐷 ↔ (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8180biimpi 218 . . . . . . 7 (𝑥𝐷 → (𝑥 𝑚𝑍 dom (𝐹𝑚) ∧ ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)))
8281simprd 498 . . . . . 6 (𝑥𝐷 → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
8382adantl 484 . . . . 5 ((𝜑𝑥𝐷) → ∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥))
84 renegcl 10951 . . . . . . . 8 (𝑧 ∈ ℝ → -𝑧 ∈ ℝ)
8584ad2antlr 725 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → -𝑧 ∈ ℝ)
86 fveq2 6672 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝐹𝑚) = (𝐹𝑛))
8786fveq1d 6674 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑛)‘𝑥))
8887breq2d 5080 . . . . . . . . . . . 12 (𝑚 = 𝑛 → (𝑧 ≤ ((𝐹𝑚)‘𝑥) ↔ 𝑧 ≤ ((𝐹𝑛)‘𝑥)))
8988rspcva 3623 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9089ancoms 461 . . . . . . . . . 10 ((∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
9190adantll 712 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ≤ ((𝐹𝑛)‘𝑥))
92 simpllr 774 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
9325ad4ant14 750 . . . . . . . . . 10 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
9492, 93lenegd 11221 . . . . . . . . 9 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → (𝑧 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑧))
9591, 94mpbid 234 . . . . . . . 8 (((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑧)
9695ralrimiva 3184 . . . . . . 7 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧)
97 brralrspcev 5128 . . . . . . 7 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9885, 96, 97syl2anc 586 . . . . . 6 ((((𝜑𝑥𝐷) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
9998rexlimdva2 3289 . . . . 5 ((𝜑𝑥𝐷) → (∃𝑧 ∈ ℝ ∀𝑚𝑍 𝑧 ≤ ((𝐹𝑚)‘𝑥) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦))
10083, 99mpd 15 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑦)
1013, 7, 39, 100suprclrnmpt 41530 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
10216a1i 11 . . . . . . 7 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
103 nfv 1915 . . . . . . . . . 10 𝑦(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
104 nfv 1915 . . . . . . . . . 10 𝑦𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
105 renegcl 10951 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
1061053ad2ant2 1130 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -𝑦 ∈ ℝ)
107 nfv 1915 . . . . . . . . . . . . . . 15 𝑛𝜑
108 nfcv 2979 . . . . . . . . . . . . . . . 16 𝑛𝑥
109 nfii1 4956 . . . . . . . . . . . . . . . 16 𝑛 𝑛𝑍 dom (𝐹𝑛)
110108, 109nfel 2994 . . . . . . . . . . . . . . 15 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
111107, 110nfan 1900 . . . . . . . . . . . . . 14 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
11262nfel1 2996 . . . . . . . . . . . . . 14 𝑛 𝑦 ∈ ℝ
113 nfra1 3221 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
114111, 112, 113nf3an 1902 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
115 simpl2 1188 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
116 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝜑)
117 simpr 487 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑛𝑍)
11822adantll 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
119133adant3 1128 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
120 simp3 1134 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
121119, 120ffvelrnd 6854 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
122116, 117, 118, 121syl3anc 1367 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
1231223ad2antl1 1181 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
124 rspa 3208 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1251243ad2antl3 1183 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
126 leneg 11145 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ) → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -((𝐹𝑛)‘𝑥) ≤ -𝑦))
127126biimp3a 1465 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ ((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
128115, 123, 125, 127syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ -𝑦)
129128ex 415 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → (𝑛𝑍 → -((𝐹𝑛)‘𝑥) ≤ -𝑦))
130114, 129ralrimi 3218 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦)
131 brralrspcev 5128 . . . . . . . . . . . 12 ((-𝑦 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ -𝑦) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
132106, 130, 131syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1331323exp 1115 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑦 ∈ ℝ → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)))
134103, 104, 133rexlimd 3319 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
135843ad2ant2 1130 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ∈ ℝ)
136 nfv 1915 . . . . . . . . . . . . . 14 𝑛 𝑧 ∈ ℝ
137 nfra1 3221 . . . . . . . . . . . . . 14 𝑛𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧
138111, 136, 137nf3an 1902 . . . . . . . . . . . . 13 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1391223ad2antl1 1181 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
140 simpl2 1188 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → 𝑧 ∈ ℝ)
141 rspa 3208 . . . . . . . . . . . . . . . 16 ((∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
1421413ad2antl3 1183 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
143 simp3 1134 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -((𝐹𝑛)‘𝑥) ≤ 𝑧)
144 renegcl 10951 . . . . . . . . . . . . . . . . . . . 20 (((𝐹𝑛)‘𝑥) ∈ ℝ → -((𝐹𝑛)‘𝑥) ∈ ℝ)
145144adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
146 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
147 leneg 11145 . . . . . . . . . . . . . . . . . . 19 ((-((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
148145, 146, 147syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
1491483adant3 1128 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (-((𝐹𝑛)‘𝑥) ≤ 𝑧 ↔ -𝑧 ≤ --((𝐹𝑛)‘𝑥)))
150143, 149mpbid 234 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ --((𝐹𝑛)‘𝑥))
151 recn 10629 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑛)‘𝑥) ∈ ℝ → ((𝐹𝑛)‘𝑥) ∈ ℂ)
152151negnegd 10990 . . . . . . . . . . . . . . . . 17 (((𝐹𝑛)‘𝑥) ∈ ℝ → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
1531523ad2ant1 1129 . . . . . . . . . . . . . . . 16 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → --((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑥))
154150, 153breqtrd 5094 . . . . . . . . . . . . . . 15 ((((𝐹𝑛)‘𝑥) ∈ ℝ ∧ 𝑧 ∈ ℝ ∧ -((𝐹𝑛)‘𝑥) ≤ 𝑧) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
155139, 140, 142, 154syl3anc 1367 . . . . . . . . . . . . . 14 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) ∧ 𝑛𝑍) → -𝑧 ≤ ((𝐹𝑛)‘𝑥))
156155ex 415 . . . . . . . . . . . . 13 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → (𝑛𝑍 → -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
157138, 156ralrimi 3218 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥))
158 breq1 5071 . . . . . . . . . . . . . 14 (𝑦 = -𝑧 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
159158ralbidv 3199 . . . . . . . . . . . . 13 (𝑦 = -𝑧 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)))
160159rspcev 3625 . . . . . . . . . . . 12 ((-𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -𝑧 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
161135, 157, 160syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑧 ∈ ℝ ∧ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
1621613exp 1115 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (𝑧 ∈ ℝ → (∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))))
163162rexlimdv 3285 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)))
164134, 163impbid 214 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧))
16532, 164rabbida 3476 . . . . . . 7 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
166102, 165eqtrd 2858 . . . . . 6 (𝜑𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
16732, 166alrimi 2213 . . . . 5 (𝜑 → ∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧})
168 eqid 2823 . . . . . . 7 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
169168rgenw 3152 . . . . . 6 𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )
170169a1i 11 . . . . 5 (𝜑 → ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
171 mpteq12f 5151 . . . . 5 ((∀𝑥 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ∧ ∀𝑥𝐷 sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
172167, 170, 171syl2anc 586 . . . 4 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )))
173 nfv 1915 . . . . 5 𝑧𝜑
174121renegcld 11069 . . . . 5 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → -((𝐹𝑛)‘𝑥) ∈ ℝ)
175 nfv 1915 . . . . . 6 𝑥(𝜑𝑛𝑍)
17634a1i 11 . . . . . 6 ((𝜑𝑛𝑍) → dom (𝐹𝑛) ∈ V)
1771213expa 1114 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
17813feqmptd 6735 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐹𝑛) = (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)))
179178eqcomd 2829 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) = (𝐹𝑛))
180179, 11eqeltrd 2915 . . . . . 6 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ ((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
181175, 9, 176, 177, 180smfneg 43085 . . . . 5 ((𝜑𝑛𝑍) → (𝑥 ∈ dom (𝐹𝑛) ↦ -((𝐹𝑛)‘𝑥)) ∈ (SMblFn‘𝑆))
182 eqid 2823 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧}
183 eqid 2823 . . . . 5 (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < ))
184107, 32, 173, 4, 5, 8, 174, 181, 182, 183smfsupmpt 43096 . . . 4 (𝜑 → (𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑧 ∈ ℝ ∀𝑛𝑍 -((𝐹𝑛)‘𝑥) ≤ 𝑧} ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
185172, 184eqeltrd 2915 . . 3 (𝜑 → (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18632, 8, 38, 101, 185smfneg 43085 . 2 (𝜑 → (𝑥𝐷 ↦ -sup(ran (𝑛𝑍 ↦ -((𝐹𝑛)‘𝑥)), ℝ, < )) ∈ (SMblFn‘𝑆))
18731, 186eqeltrd 2915 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  c0 4293   ciin 4922   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  wf 6353  cfv 6357  supcsup 8906  infcinf 8907  cr 10538   < clt 10677  cle 10678  -cneg 10873  cz 11984  cuz 12246  SAlgcsalg 42600  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-omul 8109  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-word 13865  df-concat 13925  df-s1 13952  df-s2 14212  df-s3 14213  df-s4 14214  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-rest 16698  df-topgen 16719  df-top 21504  df-bases 21556  df-salg 42601  df-salgen 42605  df-smblfn 42985
This theorem is referenced by:  smfinf  43099
  Copyright terms: Public domain W3C validator