Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim2 Structured version   Visualization version   GIF version

Theorem smflim2 43073
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO: this has fewer distinct variable conditions than smflim 43046 and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflim2.n 𝑚𝐹
smflim2.x 𝑥𝐹
smflim2.m (𝜑𝑀 ∈ ℤ)
smflim2.z 𝑍 = (ℤ𝑀)
smflim2.s (𝜑𝑆 ∈ SAlg)
smflim2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim2 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim2
Dummy variables 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2977 . 2 𝑗𝐹
2 nfcv 2977 . 2 𝑦𝐹
3 smflim2.m . 2 (𝜑𝑀 ∈ ℤ)
4 smflim2.z . 2 𝑍 = (ℤ𝑀)
5 smflim2.s . 2 (𝜑𝑆 ∈ SAlg)
6 smflim2.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflim2.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
8 nfcv 2977 . . . . 5 𝑥𝑍
9 nfcv 2977 . . . . . 6 𝑥(ℤ𝑛)
10 smflim2.x . . . . . . . 8 𝑥𝐹
11 nfcv 2977 . . . . . . . 8 𝑥𝑚
1210, 11nffv 6675 . . . . . . 7 𝑥(𝐹𝑚)
1312nfdm 5818 . . . . . 6 𝑥dom (𝐹𝑚)
149, 13nfiin 4943 . . . . 5 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
158, 14nfiun 4942 . . . 4 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
16 nfcv 2977 . . . 4 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
17 nfv 1911 . . . 4 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
18 nfcv 2977 . . . . . . 7 𝑗((𝐹𝑚)‘𝑦)
19 smflim2.n . . . . . . . . 9 𝑚𝐹
20 nfcv 2977 . . . . . . . . 9 𝑚𝑗
2119, 20nffv 6675 . . . . . . . 8 𝑚(𝐹𝑗)
22 nfcv 2977 . . . . . . . 8 𝑚𝑦
2321, 22nffv 6675 . . . . . . 7 𝑚((𝐹𝑗)‘𝑦)
24 fveq2 6665 . . . . . . . 8 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
2524fveq1d 6667 . . . . . . 7 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑗)‘𝑦))
2618, 23, 25cbvmpt 5160 . . . . . 6 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
27 nfcv 2977 . . . . . . . . 9 𝑥𝑗
2810, 27nffv 6675 . . . . . . . 8 𝑥(𝐹𝑗)
29 nfcv 2977 . . . . . . . 8 𝑥𝑦
3028, 29nffv 6675 . . . . . . 7 𝑥((𝐹𝑗)‘𝑦)
318, 30nfmpt 5156 . . . . . 6 𝑥(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
3226, 31nfcxfr 2975 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
33 nfcv 2977 . . . . 5 𝑥dom ⇝
3432, 33nfel 2992 . . . 4 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
35 fveq2 6665 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
3635mpteq2dv 5155 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
3736eleq1d 2897 . . . 4 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
3815, 16, 17, 34, 37cbvrabw 3490 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
39 fveq2 6665 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
4039iineq1d 41349 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
41 nfcv 2977 . . . . . . . . . 10 𝑗dom (𝐹𝑚)
4221nfdm 5818 . . . . . . . . . 10 𝑚dom (𝐹𝑗)
4324dmeqd 5769 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
4441, 42, 43cbviin 4955 . . . . . . . . 9 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4544a1i 11 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4640, 45eqtrd 2856 . . . . . . 7 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4746cbviunv 4958 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4847eleq2i 2904 . . . . 5 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4926eleq1i 2903 . . . . 5 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ )
5048, 49anbi12i 628 . . . 4 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∧ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ ))
5150rabbia2 3478 . . 3 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
527, 38, 513eqtri 2848 . 2 𝐷 = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
53 smflim2.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54 nfrab1 3385 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
557, 54nfcxfr 2975 . . . 4 𝑥𝐷
56 nfcv 2977 . . . 4 𝑦𝐷
57 nfcv 2977 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
58 nfcv 2977 . . . . 5 𝑥
5958, 31nffv 6675 . . . 4 𝑥( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6026a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6136, 60eqtrd 2856 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6261fveq2d 6669 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6355, 56, 57, 59, 62cbvmptf 5158 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6453, 63eqtri 2844 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
651, 2, 3, 4, 5, 6, 52, 64smflim 43046 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  wnfc 2961  {crab 3142   ciun 4912   ciin 4913  cmpt 5139  dom cdm 5550  wf 6346  cfv 6350  cz 11975  cuz 12237  cli 14835  SAlgcsalg 42586  SMblFncsmblfn 42970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-iin 4915  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-se 5510  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ioo 12736  df-ico 12738  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-rest 16690  df-salg 42587  df-smblfn 42971
This theorem is referenced by:  smflimmpt  43077
  Copyright terms: Public domain W3C validator