Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflim2 Structured version   Visualization version   GIF version

Theorem smflim2 41333
Description: The limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (a) of [Fremlin1] p. 38 . Notice that every function in the sequence can have a different (partial) domain, and the domain of convergence can be decidedly irregular (Remark 121G of [Fremlin1] p. 39 ). TODO this has less distinct variable restrictions than smflim and should replace it. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smflim2.n 𝑚𝐹
smflim2.x 𝑥𝐹
smflim2.m (𝜑𝑀 ∈ ℤ)
smflim2.z 𝑍 = (ℤ𝑀)
smflim2.s (𝜑𝑆 ∈ SAlg)
smflim2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflim2.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflim2.g 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smflim2 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smflim2
Dummy variables 𝑦 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2793 . 2 𝑗𝐹
2 nfcv 2793 . 2 𝑦𝐹
3 smflim2.m . 2 (𝜑𝑀 ∈ ℤ)
4 smflim2.z . 2 𝑍 = (ℤ𝑀)
5 smflim2.s . 2 (𝜑𝑆 ∈ SAlg)
6 smflim2.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
7 smflim2.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
8 nfcv 2793 . . . . 5 𝑥𝑍
9 nfcv 2793 . . . . . 6 𝑥(ℤ𝑛)
10 smflim2.x . . . . . . . 8 𝑥𝐹
11 nfcv 2793 . . . . . . . 8 𝑥𝑚
1210, 11nffv 6236 . . . . . . 7 𝑥(𝐹𝑚)
1312nfdm 5399 . . . . . 6 𝑥dom (𝐹𝑚)
149, 13nfiin 4581 . . . . 5 𝑥 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
158, 14nfiun 4580 . . . 4 𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
16 nfcv 2793 . . . 4 𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
17 nfv 1883 . . . 4 𝑦(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝
18 nfcv 2793 . . . . . . 7 𝑗((𝐹𝑚)‘𝑦)
19 smflim2.n . . . . . . . . 9 𝑚𝐹
20 nfcv 2793 . . . . . . . . 9 𝑚𝑗
2119, 20nffv 6236 . . . . . . . 8 𝑚(𝐹𝑗)
22 nfcv 2793 . . . . . . . 8 𝑚𝑦
2321, 22nffv 6236 . . . . . . 7 𝑚((𝐹𝑗)‘𝑦)
24 fveq2 6229 . . . . . . . 8 (𝑚 = 𝑗 → (𝐹𝑚) = (𝐹𝑗))
2524fveq1d 6231 . . . . . . 7 (𝑚 = 𝑗 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑗)‘𝑦))
2618, 23, 25cbvmpt 4782 . . . . . 6 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
27 nfcv 2793 . . . . . . . . 9 𝑥𝑗
2810, 27nffv 6236 . . . . . . . 8 𝑥(𝐹𝑗)
29 nfcv 2793 . . . . . . . 8 𝑥𝑦
3028, 29nffv 6236 . . . . . . 7 𝑥((𝐹𝑗)‘𝑦)
318, 30nfmpt 4779 . . . . . 6 𝑥(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))
3226, 31nfcxfr 2791 . . . . 5 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦))
33 nfcv 2793 . . . . 5 𝑥dom ⇝
3432, 33nfel 2806 . . . 4 𝑥(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝
35 fveq2 6229 . . . . . 6 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
3635mpteq2dv 4778 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
3736eleq1d 2715 . . . 4 (𝑥 = 𝑦 → ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ ↔ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ))
3815, 16, 17, 34, 37cbvrab 3229 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ } = {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ }
39 fveq2 6229 . . . . . . . . 9 (𝑛 = 𝑘 → (ℤ𝑛) = (ℤ𝑘))
4039iineq1d 39581 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚))
41 nfcv 2793 . . . . . . . . . 10 𝑗dom (𝐹𝑚)
4221nfdm 5399 . . . . . . . . . 10 𝑚dom (𝐹𝑗)
4324dmeqd 5358 . . . . . . . . . 10 (𝑚 = 𝑗 → dom (𝐹𝑚) = dom (𝐹𝑗))
4441, 42, 43cbviin 4590 . . . . . . . . 9 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4544a1i 11 . . . . . . . 8 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑘)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4640, 45eqtrd 2685 . . . . . . 7 (𝑛 = 𝑘 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4746cbviunv 4591 . . . . . 6 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗)
4847eleq2i 2722 . . . . 5 (𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ 𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗))
4926eleq1i 2721 . . . . 5 ((𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ↔ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ )
5048, 49anbi12i 733 . . . 4 ((𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∧ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ ) ↔ (𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∧ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ ))
5150rabbia2 3218 . . 3 {𝑦 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) ∈ dom ⇝ } = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
527, 38, 513eqtri 2677 . 2 𝐷 = {𝑦 𝑘𝑍 𝑗 ∈ (ℤ𝑘)dom (𝐹𝑗) ∣ (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)) ∈ dom ⇝ }
53 smflim2.g . . 3 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
54 nfrab1 3152 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
557, 54nfcxfr 2791 . . . 4 𝑥𝐷
56 nfcv 2793 . . . 4 𝑦𝐷
57 nfcv 2793 . . . 4 𝑦( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
58 nfcv 2793 . . . . 5 𝑥
5958, 31nffv 6236 . . . 4 𝑥( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6026a1i 11 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6136, 60eqtrd 2685 . . . . 5 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦)))
6261fveq2d 6233 . . . 4 (𝑥 = 𝑦 → ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6355, 56, 57, 59, 62cbvmptf 4781 . . 3 (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
6453, 63eqtri 2673 . 2 𝐺 = (𝑦𝐷 ↦ ( ⇝ ‘(𝑗𝑍 ↦ ((𝐹𝑗)‘𝑦))))
651, 2, 3, 4, 5, 6, 52, 64smflim 41306 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1523  wcel 2030  wnfc 2780  {crab 2945   ciun 4552   ciin 4553  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  cz 11415  cuz 11725  cli 14259  SAlgcsalg 40846  SMblFncsmblfn 41230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-ac2 9323  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-omul 7610  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-ac 8977  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-q 11827  df-rp 11871  df-ioo 12217  df-ico 12219  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-rest 16130  df-salg 40847  df-smblfn 41231
This theorem is referenced by:  smflimmpt  41337
  Copyright terms: Public domain W3C validator