Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfliminf Structured version   Visualization version   GIF version

Theorem smfliminf 42982
Description: The inferior limit of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (e) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
smfliminf.n 𝑚𝐹
smfliminf.x 𝑥𝐹
smfliminf.m (𝜑𝑀 ∈ ℤ)
smfliminf.z 𝑍 = (ℤ𝑀)
smfliminf.s (𝜑𝑆 ∈ SAlg)
smfliminf.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfliminf.d 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
smfliminf.g 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
Assertion
Ref Expression
smfliminf (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑛,𝐹   𝑚,𝑍,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑚,𝑛)   𝑆(𝑥,𝑚,𝑛)   𝐹(𝑥,𝑚)   𝐺(𝑥,𝑚,𝑛)   𝑀(𝑥,𝑚,𝑛)

Proof of Theorem smfliminf
Dummy variables 𝑦 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfliminf.m . 2 (𝜑𝑀 ∈ ℤ)
2 smfliminf.z . 2 𝑍 = (ℤ𝑀)
3 smfliminf.s . 2 (𝜑𝑆 ∈ SAlg)
4 smfliminf.f . 2 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 smfliminf.d . . 3 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
6 nfcv 2974 . . . . 5 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
7 nfcv 2974 . . . . 5 𝑛 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
8 fveq2 6663 . . . . . . 7 (𝑛 = 𝑖 → (ℤ𝑛) = (ℤ𝑖))
98iineq1d 41233 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚))
10 nfcv 2974 . . . . . . . . 9 𝑘(𝐹𝑚)
1110nfdm 5816 . . . . . . . 8 𝑘dom (𝐹𝑚)
12 smfliminf.n . . . . . . . . . 10 𝑚𝐹
13 nfcv 2974 . . . . . . . . . 10 𝑚𝑘
1412, 13nffv 6673 . . . . . . . . 9 𝑚(𝐹𝑘)
1514nfdm 5816 . . . . . . . 8 𝑚dom (𝐹𝑘)
16 fveq2 6663 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
1716dmeqd 5767 . . . . . . . 8 (𝑚 = 𝑘 → dom (𝐹𝑚) = dom (𝐹𝑘))
1811, 15, 17cbviin 4953 . . . . . . 7 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
1918a1i 11 . . . . . 6 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑖)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
209, 19eqtrd 2853 . . . . 5 (𝑛 = 𝑖 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘))
216, 7, 20cbviun 4952 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
2221rabeqi 3480 . . 3 {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
23 nfcv 2974 . . . . 5 𝑥𝑍
24 nfcv 2974 . . . . . 6 𝑥(ℤ𝑖)
25 smfliminf.x . . . . . . . 8 𝑥𝐹
26 nfcv 2974 . . . . . . . 8 𝑥𝑘
2725, 26nffv 6673 . . . . . . 7 𝑥(𝐹𝑘)
2827nfdm 5816 . . . . . 6 𝑥dom (𝐹𝑘)
2924, 28nfiin 4941 . . . . 5 𝑥 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
3023, 29nfiun 4940 . . . 4 𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
31 nfcv 2974 . . . 4 𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘)
32 nfv 1906 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ
33 nfcv 2974 . . . . . 6 𝑥lim inf
34 nfcv 2974 . . . . . . . 8 𝑥𝑦
3527, 34nffv 6673 . . . . . . 7 𝑥((𝐹𝑘)‘𝑦)
3623, 35nfmpt 5154 . . . . . 6 𝑥(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
3733, 36nffv 6673 . . . . 5 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
38 nfcv 2974 . . . . 5 𝑥
3937, 38nfel 2989 . . . 4 𝑥(lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ
40 nfv 1906 . . . . . . . 8 𝑚 𝑥 = 𝑦
41 fveq2 6663 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4241adantr 481 . . . . . . . 8 ((𝑥 = 𝑦𝑚𝑍) → ((𝐹𝑚)‘𝑥) = ((𝐹𝑚)‘𝑦))
4340, 42mpteq2da 5151 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)))
44 nfcv 2974 . . . . . . . . 9 𝑘((𝐹𝑚)‘𝑦)
45 nfcv 2974 . . . . . . . . . 10 𝑚𝑦
4614, 45nffv 6673 . . . . . . . . 9 𝑚((𝐹𝑘)‘𝑦)
4716fveq1d 6665 . . . . . . . . 9 (𝑚 = 𝑘 → ((𝐹𝑚)‘𝑦) = ((𝐹𝑘)‘𝑦))
4844, 46, 47cbvmpt 5158 . . . . . . . 8 (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))
4948a1i 11 . . . . . . 7 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑦)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5043, 49eqtrd 2853 . . . . . 6 (𝑥 = 𝑦 → (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) = (𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦)))
5150fveq2d 6667 . . . . 5 (𝑥 = 𝑦 → (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) = (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
5251eleq1d 2894 . . . 4 (𝑥 = 𝑦 → ((lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ ↔ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ))
5330, 31, 32, 39, 52cbvrab 3488 . . 3 {𝑥 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ} = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
545, 22, 533eqtri 2845 . 2 𝐷 = {𝑦 𝑖𝑍 𝑘 ∈ (ℤ𝑖)dom (𝐹𝑘) ∣ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))) ∈ ℝ}
55 smfliminf.g . . 3 𝐺 = (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
56 nfrab1 3382 . . . . 5 𝑥{𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))) ∈ ℝ}
575, 56nfcxfr 2972 . . . 4 𝑥𝐷
58 nfcv 2974 . . . 4 𝑦𝐷
59 nfcv 2974 . . . 4 𝑦(lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))
6057, 58, 59, 37, 51cbvmptf 5156 . . 3 (𝑥𝐷 ↦ (lim inf‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)))) = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
6155, 60eqtri 2841 . 2 𝐺 = (𝑦𝐷 ↦ (lim inf‘(𝑘𝑍 ↦ ((𝐹𝑘)‘𝑦))))
621, 2, 3, 4, 54, 61smfliminflem 42981 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1528  wcel 2105  wnfc 2958  {crab 3139   ciun 4910   ciin 4911  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  cr 10524  cz 11969  cuz 12231  lim infclsi 41908  SAlgcsalg 42470  SMblFncsmblfn 42854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-ceil 13151  df-seq 13358  df-exp 13418  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-s2 14198  df-s3 14199  df-s4 14200  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-rest 16684  df-topgen 16705  df-top 21430  df-bases 21482  df-liminf 41909  df-salg 42471  df-salgen 42475  df-smblfn 42855
This theorem is referenced by:  smfliminfmpt  42983
  Copyright terms: Public domain W3C validator