Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smflimlem6 Structured version   Visualization version   GIF version

Theorem smflimlem6 39461
Description: Lemma for the proof that the limit of sigma-measurable functions is sigma-measurable, Proposition 121F (a) of [Fremlin1] p. 38 . This lemma proves that the preimages of right-closed, unbounded-below intervals are in the subspace sigma-algebra induced by 𝐷. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smflimlem6.1 (𝜑𝑀 ∈ ℤ)
smflimlem6.2 𝑍 = (ℤ𝑀)
smflimlem6.3 (𝜑𝑆 ∈ SAlg)
smflimlem6.4 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smflimlem6.5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
smflimlem6.6 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
smflimlem6.7 (𝜑𝐴 ∈ ℝ)
smflimlem6.8 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
Assertion
Ref Expression
smflimlem6 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑘,𝑚,𝑛,𝑥   𝐴,𝑠,𝑘,𝑚,𝑥   𝐷,𝑘,𝑚,𝑛,𝑥   𝑘,𝐹,𝑚,𝑛,𝑥   𝐹,𝑠   𝑘,𝐺,𝑚,𝑛   𝑚,𝑀   𝑃,𝑘,𝑚,𝑛,𝑥   𝑃,𝑠   𝑆,𝑘,𝑚,𝑛   𝑆,𝑠   𝑘,𝑍,𝑚,𝑛,𝑥   𝑍,𝑠   𝜑,𝑘,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑠)   𝐷(𝑠)   𝑆(𝑥)   𝐺(𝑥,𝑠)   𝑀(𝑥,𝑘,𝑛,𝑠)

Proof of Theorem smflimlem6
Dummy variables 𝑐 𝑟 𝑖 𝑗 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smflimlem6.2 . . . . . . . 8 𝑍 = (ℤ𝑀)
2 fvex 6093 . . . . . . . 8 (ℤ𝑀) ∈ V
31, 2eqeltri 2678 . . . . . . 7 𝑍 ∈ V
4 nnex 10868 . . . . . . 7 ℕ ∈ V
53, 4xpex 6832 . . . . . 6 (𝑍 × ℕ) ∈ V
65a1i 11 . . . . 5 (𝜑 → (𝑍 × ℕ) ∈ V)
7 eqid 2604 . . . . . . . . 9 {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}
8 smflimlem6.3 . . . . . . . . 9 (𝜑𝑆 ∈ SAlg)
97, 8rabexd 4731 . . . . . . . 8 (𝜑 → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
109adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
1110ralrimivva 2948 . . . . . 6 (𝜑 → ∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V)
12 smflimlem6.8 . . . . . . 7 𝑃 = (𝑚𝑍, 𝑘 ∈ ℕ ↦ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
1312fnmpt2 7099 . . . . . 6 (∀𝑚𝑍𝑘 ∈ ℕ {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ∈ V → 𝑃 Fn (𝑍 × ℕ))
1411, 13syl 17 . . . . 5 (𝜑𝑃 Fn (𝑍 × ℕ))
15 fnrndomg 9211 . . . . 5 ((𝑍 × ℕ) ∈ V → (𝑃 Fn (𝑍 × ℕ) → ran 𝑃 ≼ (𝑍 × ℕ)))
166, 14, 15sylc 62 . . . 4 (𝜑 → ran 𝑃 ≼ (𝑍 × ℕ))
171uzct 38055 . . . . . . 7 𝑍 ≼ ω
18 nnct 12592 . . . . . . 7 ℕ ≼ ω
1917, 18pm3.2i 469 . . . . . 6 (𝑍 ≼ ω ∧ ℕ ≼ ω)
20 xpct 8694 . . . . . 6 ((𝑍 ≼ ω ∧ ℕ ≼ ω) → (𝑍 × ℕ) ≼ ω)
2119, 20ax-mp 5 . . . . 5 (𝑍 × ℕ) ≼ ω
2221a1i 11 . . . 4 (𝜑 → (𝑍 × ℕ) ≼ ω)
23 domtr 7867 . . . 4 ((ran 𝑃 ≼ (𝑍 × ℕ) ∧ (𝑍 × ℕ) ≼ ω) → ran 𝑃 ≼ ω)
2416, 22, 23syl2anc 690 . . 3 (𝜑 → ran 𝑃 ≼ ω)
25 vex 3170 . . . . . . 7 𝑦 ∈ V
2612elrnmpt2g 6643 . . . . . . 7 (𝑦 ∈ V → (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}))
2725, 26ax-mp 5 . . . . . 6 (𝑦 ∈ ran 𝑃 ↔ ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2827biimpi 204 . . . . 5 (𝑦 ∈ ran 𝑃 → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
2928adantl 480 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → ∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
30 simp3 1055 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))})
318adantr 479 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → 𝑆 ∈ SAlg)
32 smflimlem6.4 . . . . . . . . . . . . . 14 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
3332ffvelrnda 6247 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
3433adantrr 748 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐹𝑚) ∈ (SMblFn‘𝑆))
35 eqid 2604 . . . . . . . . . . . 12 dom (𝐹𝑚) = dom (𝐹𝑚)
36 smflimlem6.7 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ ℝ)
3736adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ ℝ)
38 nnrecre 10899 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
3938adantl 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
4037, 39readdcld 9920 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4140adantrl 747 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → (𝐴 + (1 / 𝑘)) ∈ ℝ)
4231, 34, 35, 41smfpreimalt 39416 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)))
43 fvex 6093 . . . . . . . . . . . . . . 15 (𝐹𝑚) ∈ V
4443dmex 6963 . . . . . . . . . . . . . 14 dom (𝐹𝑚) ∈ V
4544a1i 11 . . . . . . . . . . . . 13 (𝜑 → dom (𝐹𝑚) ∈ V)
46 elrest 15852 . . . . . . . . . . . . 13 ((𝑆 ∈ SAlg ∧ dom (𝐹𝑚) ∈ V) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
478, 45, 46syl2anc 690 . . . . . . . . . . . 12 (𝜑 → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4847adantr 479 . . . . . . . . . . 11 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ({𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} ∈ (𝑆t dom (𝐹𝑚)) ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))))
4942, 48mpbid 220 . . . . . . . . . 10 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
50 rabn0 3906 . . . . . . . . . 10 ({𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅ ↔ ∃𝑠𝑆 {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚)))
5149, 50sylibr 222 . . . . . . . . 9 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ)) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
52513adant3 1073 . . . . . . . 8 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} ≠ ∅)
5330, 52eqnetrd 2843 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑘 ∈ ℕ) ∧ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))}) → 𝑦 ≠ ∅)
54533exp 1255 . . . . . 6 (𝜑 → ((𝑚𝑍𝑘 ∈ ℕ) → (𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅)))
5554rexlimdvv 3013 . . . . 5 (𝜑 → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5655adantr 479 . . . 4 ((𝜑𝑦 ∈ ran 𝑃) → (∃𝑚𝑍𝑘 ∈ ℕ 𝑦 = {𝑠𝑆 ∣ {𝑥 ∈ dom (𝐹𝑚) ∣ ((𝐹𝑚)‘𝑥) < (𝐴 + (1 / 𝑘))} = (𝑠 ∩ dom (𝐹𝑚))} → 𝑦 ≠ ∅))
5729, 56mpd 15 . . 3 ((𝜑𝑦 ∈ ran 𝑃) → 𝑦 ≠ ∅)
5824, 57axccd2 38223 . 2 (𝜑 → ∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦)
59 smflimlem6.1 . . . . . 6 (𝜑𝑀 ∈ ℤ)
6059adantr 479 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑀 ∈ ℤ)
618adantr 479 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝑆 ∈ SAlg)
6232adantr 479 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐹:𝑍⟶(SMblFn‘𝑆))
63 smflimlem6.5 . . . . 5 𝐷 = {𝑥 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ∣ (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥)) ∈ dom ⇝ }
64 smflimlem6.6 . . . . 5 𝐺 = (𝑥𝐷 ↦ ( ⇝ ‘(𝑚𝑍 ↦ ((𝐹𝑚)‘𝑥))))
6536adantr 479 . . . . 5 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → 𝐴 ∈ ℝ)
66 oveq1 6529 . . . . . . 7 (𝑙 = 𝑚 → (𝑙𝑃𝑗) = (𝑚𝑃𝑗))
6766fveq2d 6087 . . . . . 6 (𝑙 = 𝑚 → (𝑐‘(𝑙𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑗)))
68 oveq2 6530 . . . . . . 7 (𝑗 = 𝑘 → (𝑚𝑃𝑗) = (𝑚𝑃𝑘))
6968fveq2d 6087 . . . . . 6 (𝑗 = 𝑘 → (𝑐‘(𝑚𝑃𝑗)) = (𝑐‘(𝑚𝑃𝑘)))
7067, 69cbvmpt2v 6606 . . . . 5 (𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗))) = (𝑚𝑍, 𝑘 ∈ ℕ ↦ (𝑐‘(𝑚𝑃𝑘)))
71 nfcv 2745 . . . . . 6 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗)
72 nfcv 2745 . . . . . . 7 𝑗𝑍
73 nfcv 2745 . . . . . . . 8 𝑗(ℤ𝑛)
74 nfcv 2745 . . . . . . . . 9 𝑗𝑚
75 nfmpt22 6594 . . . . . . . . 9 𝑗(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))
76 nfcv 2745 . . . . . . . . 9 𝑗𝑘
7774, 75, 76nfov 6548 . . . . . . . 8 𝑗(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7873, 77nfiin 4474 . . . . . . 7 𝑗 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
7972, 78nfiun 4473 . . . . . 6 𝑗 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
80 oveq2 6530 . . . . . . . . . . 11 (𝑗 = 𝑘 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8180adantr 479 . . . . . . . . . 10 ((𝑗 = 𝑘𝑖 ∈ (ℤ𝑛)) → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8281iineq2dv 4468 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
83 oveq1 6529 . . . . . . . . . . 11 (𝑖 = 𝑚 → (𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = (𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8483cbviinv 4485 . . . . . . . . . 10 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
8584a1i 11 . . . . . . . . 9 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8682, 85eqtrd 2638 . . . . . . . 8 (𝑗 = 𝑘 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8786adantr 479 . . . . . . 7 ((𝑗 = 𝑘𝑛𝑍) → 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8887iuneq2dv 4467 . . . . . 6 (𝑗 = 𝑘 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘))
8971, 79, 88cbviin 4483 . . . . 5 𝑗 ∈ ℕ 𝑛𝑍 𝑖 ∈ (ℤ𝑛)(𝑖(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑗) = 𝑘 ∈ ℕ 𝑛𝑍 𝑚 ∈ (ℤ𝑛)(𝑚(𝑙𝑍, 𝑗 ∈ ℕ ↦ (𝑐‘(𝑙𝑃𝑗)))𝑘)
90 fveq2 6083 . . . . . . . 8 (𝑦 = 𝑟 → (𝑐𝑦) = (𝑐𝑟))
91 id 22 . . . . . . . 8 (𝑦 = 𝑟𝑦 = 𝑟)
9290, 91eleq12d 2676 . . . . . . 7 (𝑦 = 𝑟 → ((𝑐𝑦) ∈ 𝑦 ↔ (𝑐𝑟) ∈ 𝑟))
9392rspccva 3275 . . . . . 6 ((∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9493adantll 745 . . . . 5 (((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) ∧ 𝑟 ∈ ran 𝑃) → (𝑐𝑟) ∈ 𝑟)
9560, 1, 61, 62, 63, 64, 65, 12, 70, 89, 94smflimlem5 39460 . . . 4 ((𝜑 ∧ ∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦) → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
9695ex 448 . . 3 (𝜑 → (∀𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9796exlimdv 1846 . 2 (𝜑 → (∃𝑐𝑦 ∈ ran 𝑃(𝑐𝑦) ∈ 𝑦 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷)))
9858, 97mpd 15 1 (𝜑 → {𝑥𝐷 ∣ (𝐺𝑥) ≤ 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030   = wceq 1474  wex 1694  wcel 1975  wne 2774  wral 2890  wrex 2891  {crab 2894  Vcvv 3167  cin 3533  c0 3868   ciun 4444   ciin 4445   class class class wbr 4572  cmpt 4632   × cxp 5021  dom cdm 5023  ran crn 5024   Fn wfn 5780  wf 5781  cfv 5785  (class class class)co 6522  cmpt2 6524  ωcom 6929  cdom 7811  cr 9786  1c1 9788   + caddc 9790   < clt 9925  cle 9926   / cdiv 10528  cn 10862  cz 11205  cuz 11514  cli 14004  t crest 15845  SAlgcsalg 39003  SMblFncsmblfn 39385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2227  ax-ext 2584  ax-rep 4688  ax-sep 4698  ax-nul 4707  ax-pow 4759  ax-pr 4823  ax-un 6819  ax-inf2 8393  ax-cc 9112  ax-ac2 9140  ax-cnex 9843  ax-resscn 9844  ax-1cn 9845  ax-icn 9846  ax-addcl 9847  ax-addrcl 9848  ax-mulcl 9849  ax-mulrcl 9850  ax-mulcom 9851  ax-addass 9852  ax-mulass 9853  ax-distr 9854  ax-i2m1 9855  ax-1ne0 9856  ax-1rid 9857  ax-rnegex 9858  ax-rrecex 9859  ax-cnre 9860  ax-pre-lttri 9861  ax-pre-lttrn 9862  ax-pre-ltadd 9863  ax-pre-mulgt0 9864  ax-pre-sup 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2456  df-mo 2457  df-clab 2591  df-cleq 2597  df-clel 2600  df-nfc 2734  df-ne 2776  df-nel 2777  df-ral 2895  df-rex 2896  df-reu 2897  df-rmo 2898  df-rab 2899  df-v 3169  df-sbc 3397  df-csb 3494  df-dif 3537  df-un 3539  df-in 3541  df-ss 3548  df-pss 3550  df-nul 3869  df-if 4031  df-pw 4104  df-sn 4120  df-pr 4122  df-tp 4124  df-op 4126  df-uni 4362  df-int 4400  df-iun 4446  df-iin 4447  df-br 4573  df-opab 4633  df-mpt 4634  df-tr 4670  df-eprel 4934  df-id 4938  df-po 4944  df-so 4945  df-fr 4982  df-se 4983  df-we 4984  df-xp 5029  df-rel 5030  df-cnv 5031  df-co 5032  df-dm 5033  df-rn 5034  df-res 5035  df-ima 5036  df-pred 5578  df-ord 5624  df-on 5625  df-lim 5626  df-suc 5627  df-iota 5749  df-fun 5787  df-fn 5788  df-f 5789  df-f1 5790  df-fo 5791  df-f1o 5792  df-fv 5793  df-isom 5794  df-riota 6484  df-ov 6525  df-oprab 6526  df-mpt2 6527  df-om 6930  df-1st 7031  df-2nd 7032  df-wrecs 7266  df-recs 7327  df-rdg 7365  df-1o 7419  df-oadd 7423  df-omul 7424  df-er 7601  df-map 7718  df-pm 7719  df-en 7814  df-dom 7815  df-sdom 7816  df-fin 7817  df-sup 8203  df-inf 8204  df-oi 8270  df-card 8620  df-acn 8623  df-ac 8794  df-pnf 9927  df-mnf 9928  df-xr 9929  df-ltxr 9930  df-le 9931  df-sub 10114  df-neg 10115  df-div 10529  df-nn 10863  df-2 10921  df-3 10922  df-n0 11135  df-z 11206  df-uz 11515  df-q 11616  df-rp 11660  df-ioo 12001  df-ico 12003  df-fl 12405  df-seq 12614  df-exp 12673  df-cj 13628  df-re 13629  df-im 13630  df-sqrt 13764  df-abs 13765  df-clim 14008  df-rlim 14009  df-rest 15847  df-salg 39004  df-smblfn 39386
This theorem is referenced by:  smflim  39462
  Copyright terms: Public domain W3C validator