![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smflimsuplem6 | Structured version Visualization version GIF version |
Description: The superior limit of a sequence of sigma-measurable functions is sigma-measurable. Proposition 121F (d) of [Fremlin1] p. 39 . (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
smflimsuplem6.a | ⊢ Ⅎ𝑛𝜑 |
smflimsuplem6.b | ⊢ Ⅎ𝑚𝜑 |
smflimsuplem6.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
smflimsuplem6.z | ⊢ 𝑍 = (ℤ≥‘𝑀) |
smflimsuplem6.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smflimsuplem6.f | ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) |
smflimsuplem6.e | ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) |
smflimsuplem6.h | ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) |
smflimsuplem6.r | ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) |
smflimsuplem6.n | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
smflimsuplem6.x | ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) |
Ref | Expression |
---|---|
smflimsuplem6 | ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smflimsuplem6.z | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | fvexi 6240 | . . . 4 ⊢ 𝑍 ∈ V |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝑍 ∈ V) |
4 | 3 | mptexd 6528 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V) |
5 | fvexd 6241 | . 2 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V) | |
6 | smflimsuplem6.a | . . . 4 ⊢ Ⅎ𝑛𝜑 | |
7 | smflimsuplem6.b | . . . 4 ⊢ Ⅎ𝑚𝜑 | |
8 | smflimsuplem6.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
9 | smflimsuplem6.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
10 | smflimsuplem6.f | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶(SMblFn‘𝑆)) | |
11 | smflimsuplem6.e | . . . 4 ⊢ 𝐸 = (𝑛 ∈ 𝑍 ↦ {𝑥 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑛)dom (𝐹‘𝑚) ∣ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ) ∈ ℝ}) | |
12 | smflimsuplem6.h | . . . 4 ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ (𝑥 ∈ (𝐸‘𝑛) ↦ sup(ran (𝑚 ∈ (ℤ≥‘𝑛) ↦ ((𝐹‘𝑚)‘𝑥)), ℝ*, < ))) | |
13 | smflimsuplem6.r | . . . 4 ⊢ (𝜑 → (lim sup‘(𝑚 ∈ 𝑍 ↦ ((𝐹‘𝑚)‘𝑋))) ∈ ℝ) | |
14 | smflimsuplem6.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
15 | smflimsuplem6.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ ∩ 𝑚 ∈ (ℤ≥‘𝑁)dom (𝐹‘𝑚)) | |
16 | 6, 7, 8, 1, 9, 10, 11, 12, 13, 14, 15 | smflimsuplem5 41351 | . . 3 ⊢ (𝜑 → (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
17 | fvexd 6241 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ∈ V) | |
18 | 1 | eluzelz2 39940 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ) |
19 | 14, 18 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
20 | eqid 2651 | . . . 4 ⊢ (ℤ≥‘𝑁) = (ℤ≥‘𝑁) | |
21 | 1 | eleq2i 2722 | . . . . . . . 8 ⊢ (𝑁 ∈ 𝑍 ↔ 𝑁 ∈ (ℤ≥‘𝑀)) |
22 | 21 | biimpi 206 | . . . . . . 7 ⊢ (𝑁 ∈ 𝑍 → 𝑁 ∈ (ℤ≥‘𝑀)) |
23 | uzss 11746 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
24 | 22, 23 | syl 17 | . . . . . 6 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
25 | 24, 1 | syl6sseqr 3685 | . . . . 5 ⊢ (𝑁 ∈ 𝑍 → (ℤ≥‘𝑁) ⊆ 𝑍) |
26 | 14, 25 | syl 17 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ 𝑍) |
27 | ssid 3657 | . . . . 5 ⊢ (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁) | |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑁)) |
29 | fvexd 6241 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑁)) → ((𝐻‘𝑛)‘𝑋) ∈ V) | |
30 | 6, 3, 17, 19, 20, 26, 28, 29 | climeqmpt 40247 | . . 3 ⊢ (𝜑 → ((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ↔ (𝑛 ∈ (ℤ≥‘𝑁) ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))))) |
31 | 16, 30 | mpbird 247 | . 2 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) |
32 | breldmg 5362 | . 2 ⊢ (((𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ V ∧ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋))) ∈ V ∧ (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ⇝ (lim sup‘(𝑚 ∈ (ℤ≥‘𝑁) ↦ ((𝐹‘𝑚)‘𝑋)))) → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) | |
33 | 4, 5, 31, 32 | syl3anc 1366 | 1 ⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ ((𝐻‘𝑛)‘𝑋)) ∈ dom ⇝ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 Ⅎwnf 1748 ∈ wcel 2030 {crab 2945 Vcvv 3231 ⊆ wss 3607 ∩ ciin 4553 class class class wbr 4685 ↦ cmpt 4762 dom cdm 5143 ran crn 5144 ⟶wf 5922 ‘cfv 5926 supcsup 8387 ℝcr 9973 ℝ*cxr 10111 < clt 10112 ℤcz 11415 ℤ≥cuz 11725 lim supclsp 14245 ⇝ cli 14259 SAlgcsalg 40846 SMblFncsmblfn 41230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-ioo 12217 df-ico 12219 df-fz 12365 df-fl 12633 df-ceil 12634 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-limsup 14246 df-clim 14263 df-smblfn 41231 |
This theorem is referenced by: smflimsuplem7 41353 |
Copyright terms: Public domain | W3C validator |