Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimbor1lem2 Structured version   Visualization version   GIF version

Theorem smfpimbor1lem2 43073
Description: Given a sigma-measurable function, the preimage of a Borel set belongs to the subspace sigma-algebra induced by the domain of the function. Proposition 121E (f) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimbor1lem2.s (𝜑𝑆 ∈ SAlg)
smfpimbor1lem2.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimbor1lem2.a 𝐷 = dom 𝐹
smfpimbor1lem2.j 𝐽 = (topGen‘ran (,))
smfpimbor1lem2.b 𝐵 = (SalGen‘𝐽)
smfpimbor1lem2.e (𝜑𝐸𝐵)
smfpimbor1lem2.p 𝑃 = (𝐹𝐸)
smfpimbor1lem2.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfpimbor1lem2 (𝜑𝑃 ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐷,𝑒   𝑒,𝐸   𝑒,𝐹   𝑒,𝐽   𝑆,𝑒   𝜑,𝑒
Allowed substitution hints:   𝐵(𝑒)   𝑃(𝑒)   𝑇(𝑒)

Proof of Theorem smfpimbor1lem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimbor1lem2.p . 2 𝑃 = (𝐹𝐸)
2 smfpimbor1lem2.j . . . . . . . 8 𝐽 = (topGen‘ran (,))
3 retop 23369 . . . . . . . 8 (topGen‘ran (,)) ∈ Top
42, 3eqeltri 2909 . . . . . . 7 𝐽 ∈ Top
54a1i 11 . . . . . 6 (𝜑𝐽 ∈ Top)
6 smfpimbor1lem2.b . . . . . 6 𝐵 = (SalGen‘𝐽)
7 smfpimbor1lem2.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
8 smfpimbor1lem2.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
9 smfpimbor1lem2.a . . . . . . 7 𝐷 = dom 𝐹
10 smfpimbor1lem2.t . . . . . . 7 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
117, 8, 9, 10smfresal 43062 . . . . . 6 (𝜑𝑇 ∈ SAlg)
127adantr 483 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑆 ∈ SAlg)
138adantr 483 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹 ∈ (SMblFn‘𝑆))
14 simpr 487 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝐽)
1512, 13, 9, 2, 14, 10smfpimbor1lem1 43072 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝑇)
1615ssd 41342 . . . . . 6 (𝜑𝐽𝑇)
17 nfcv 2977 . . . . . . . . . . . . . 14 𝑒𝑥
18 nfrab1 3384 . . . . . . . . . . . . . . 15 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
1910, 18nfcxfr 2975 . . . . . . . . . . . . . 14 𝑒𝑇
2017, 19eluni2f 41367 . . . . . . . . . . . . 13 (𝑥 𝑇 ↔ ∃𝑒𝑇 𝑥𝑒)
2120biimpi 218 . . . . . . . . . . . 12 (𝑥 𝑇 → ∃𝑒𝑇 𝑥𝑒)
2219nfuni 4844 . . . . . . . . . . . . . 14 𝑒 𝑇
2317, 22nfel 2992 . . . . . . . . . . . . 13 𝑒 𝑥 𝑇
24 nfv 1911 . . . . . . . . . . . . 13 𝑒 𝑥 ∈ ℝ
2510eleq2i 2904 . . . . . . . . . . . . . . . . . . . 20 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
2625biimpi 218 . . . . . . . . . . . . . . . . . . 19 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
27 rabidim1 3380 . . . . . . . . . . . . . . . . . . 19 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
2826, 27syl 17 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
29 elpwi 4547 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
3028, 29syl 17 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ⊆ ℝ)
3130adantr 483 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑒 ⊆ ℝ)
32 simpr 487 . . . . . . . . . . . . . . . 16 ((𝑒𝑇𝑥𝑒) → 𝑥𝑒)
3331, 32sseldd 3967 . . . . . . . . . . . . . . 15 ((𝑒𝑇𝑥𝑒) → 𝑥 ∈ ℝ)
3433ex 415 . . . . . . . . . . . . . 14 (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ))
3534a1i 11 . . . . . . . . . . . . 13 (𝑥 𝑇 → (𝑒𝑇 → (𝑥𝑒𝑥 ∈ ℝ)))
3623, 24, 35rexlimd 3317 . . . . . . . . . . . 12 (𝑥 𝑇 → (∃𝑒𝑇 𝑥𝑒𝑥 ∈ ℝ))
3721, 36mpd 15 . . . . . . . . . . 11 (𝑥 𝑇𝑥 ∈ ℝ)
3837rgen 3148 . . . . . . . . . 10 𝑥 𝑇𝑥 ∈ ℝ
39 dfss3 3955 . . . . . . . . . 10 ( 𝑇 ⊆ ℝ ↔ ∀𝑥 𝑇𝑥 ∈ ℝ)
4038, 39mpbir 233 . . . . . . . . 9 𝑇 ⊆ ℝ
4140a1i 11 . . . . . . . 8 (𝜑 𝑇 ⊆ ℝ)
42 uniretop 23370 . . . . . . . . . . . 12 ℝ = (topGen‘ran (,))
432eqcomi 2830 . . . . . . . . . . . . 13 (topGen‘ran (,)) = 𝐽
4443unieqi 4850 . . . . . . . . . . . 12 (topGen‘ran (,)) = 𝐽
4542, 44eqtr2i 2845 . . . . . . . . . . 11 𝐽 = ℝ
4645a1i 11 . . . . . . . . . 10 (𝜑 𝐽 = ℝ)
4746eqcomd 2827 . . . . . . . . 9 (𝜑 → ℝ = 𝐽)
4816unissd 4847 . . . . . . . . 9 (𝜑 𝐽 𝑇)
4947, 48eqsstrd 4004 . . . . . . . 8 (𝜑 → ℝ ⊆ 𝑇)
5041, 49eqssd 3983 . . . . . . 7 (𝜑 𝑇 = ℝ)
5150, 46eqtr4d 2859 . . . . . 6 (𝜑 𝑇 = 𝐽)
525, 6, 11, 16, 51salgenss 42618 . . . . 5 (𝜑𝐵𝑇)
53 smfpimbor1lem2.e . . . . 5 (𝜑𝐸𝐵)
5452, 53sseldd 3967 . . . 4 (𝜑𝐸𝑇)
55 imaeq2 5924 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
5655eleq1d 2897 . . . . 5 (𝑒 = 𝐸 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5756, 10elrab2 3682 . . . 4 (𝐸𝑇 ↔ (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5854, 57sylib 220 . . 3 (𝜑 → (𝐸 ∈ 𝒫 ℝ ∧ (𝐹𝐸) ∈ (𝑆t 𝐷)))
5958simprd 498 . 2 (𝜑 → (𝐹𝐸) ∈ (𝑆t 𝐷))
601, 59eqeltrid 2917 1 (𝜑𝑃 ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  wss 3935  𝒫 cpw 4538   cuni 4837  ccnv 5553  dom cdm 5554  ran crn 5555  cima 5557  cfv 6354  (class class class)co 7155  cr 10535  (,)cioo 12737  t crest 16693  topGenctg 16710  Topctop 21500  SAlgcsalg 42592  SalGencsalgen 42596  SMblFncsmblfn 42976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cc 9856  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-omul 8106  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-ioo 12741  df-ico 12743  df-fl 13161  df-rest 16695  df-topgen 16716  df-top 21501  df-bases 21553  df-salg 42593  df-salgen 42597  df-smblfn 42977
This theorem is referenced by:  smfpimbor1  43074
  Copyright terms: Public domain W3C validator