Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimcclem Structured version   Visualization version   GIF version

Theorem smfpimcclem 40350
 Description: Lemma for smfpimcc 40351 given the choice function 𝐶. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfpimcclem.n 𝑛𝜑
smfpimcclem.z 𝑍𝑉
smfpimcclem.s (𝜑𝑆𝑊)
smfpimcclem.c ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
smfpimcclem.h 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
Assertion
Ref Expression
smfpimcclem (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
Distinct variable groups:   𝐴,   𝐴,𝑠,𝑦   𝐶,𝑠,𝑦   ,𝐹   𝐹,𝑠,𝑦   ,𝐻   𝑆,,𝑛   𝑆,𝑠,𝑦,𝑛   ,𝑍,𝑛   𝑦,𝑍   𝜑,𝑦
Allowed substitution hints:   𝜑(,𝑛,𝑠)   𝐴(𝑛)   𝐶(,𝑛)   𝐹(𝑛)   𝐻(𝑦,𝑛,𝑠)   𝑉(𝑦,,𝑛,𝑠)   𝑊(𝑦,,𝑛,𝑠)   𝑍(𝑠)

Proof of Theorem smfpimcclem
StepHypRef Expression
1 smfpimcclem.n . . 3 𝑛𝜑
2 nfcv 2761 . . . . 5 𝑠𝑆
32ssrab2f 38824 . . . 4 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ⊆ 𝑆
4 eqid 2621 . . . . . . 7 {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
5 smfpimcclem.s . . . . . . 7 (𝜑𝑆𝑊)
64, 5rabexd 4784 . . . . . 6 (𝜑 → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
76adantr 481 . . . . 5 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V)
8 simpl 473 . . . . . 6 ((𝜑𝑛𝑍) → 𝜑)
9 simpr 477 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑛𝑍)
10 eqid 2621 . . . . . . . 8 (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) = (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1110elrnmpt1 5344 . . . . . . 7 ((𝑛𝑍 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
129, 7, 11syl2anc 692 . . . . . 6 ((𝜑𝑛𝑍) → {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
138, 12jca 554 . . . . 5 ((𝜑𝑛𝑍) → (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
14 eleq1 2686 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ↔ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
1514anbi2d 739 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ↔ (𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))))
16 fveq2 6158 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (𝐶𝑦) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
17 id 22 . . . . . . . 8 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → 𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
1816, 17eleq12d 2692 . . . . . . 7 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → ((𝐶𝑦) ∈ 𝑦 ↔ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
1915, 18imbi12d 334 . . . . . 6 (𝑦 = {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} → (((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦) ↔ ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
20 smfpimcclem.c . . . . . 6 ((𝜑𝑦 ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶𝑦) ∈ 𝑦)
2119, 20vtoclg 3256 . . . . 5 ({𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ V → ((𝜑 ∧ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ∈ ran (𝑛𝑍 ↦ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
227, 13, 21sylc 65 . . . 4 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
233, 22sseldi 3586 . . 3 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆)
24 smfpimcclem.h . . 3 𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
251, 23, 24fmptdf 6353 . 2 (𝜑𝐻:𝑍𝑆)
26 nfcv 2761 . . . . . . . . 9 𝑠𝐶
27 nfrab1 3115 . . . . . . . . 9 𝑠{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}
2826, 27nffv 6165 . . . . . . . 8 𝑠(𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})
29 nfcv 2761 . . . . . . . . 9 𝑠((𝐹𝑛) “ 𝐴)
30 nfcv 2761 . . . . . . . . . 10 𝑠dom (𝐹𝑛)
3128, 30nfin 3804 . . . . . . . . 9 𝑠((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
3229, 31nfeq 2772 . . . . . . . 8 𝑠((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))
33 ineq1 3791 . . . . . . . . 9 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (𝑠 ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3433eqeq2d 2631 . . . . . . . 8 (𝑠 = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) → (((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3528, 2, 32, 34elrabf 3348 . . . . . . 7 ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ {𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))} ↔ ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3622, 35sylib 208 . . . . . 6 ((𝜑𝑛𝑍) → ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ 𝑆 ∧ ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛))))
3736simprd 479 . . . . 5 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
3824a1i 11 . . . . . . 7 (𝜑𝐻 = (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})))
3922elexd 3204 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∈ V)
4038, 39fvmpt2d 6260 . . . . . 6 ((𝜑𝑛𝑍) → (𝐻𝑛) = (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
4140ineq1d 3797 . . . . 5 ((𝜑𝑛𝑍) → ((𝐻𝑛) ∩ dom (𝐹𝑛)) = ((𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}) ∩ dom (𝐹𝑛)))
4237, 41eqtr4d 2658 . . . 4 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
4342ex 450 . . 3 (𝜑 → (𝑛𝑍 → ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
441, 43ralrimi 2953 . 2 (𝜑 → ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
45 smfpimcclem.z . . . . . 6 𝑍𝑉
4645elexi 3203 . . . . 5 𝑍 ∈ V
4746mptex 6451 . . . 4 (𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))})) ∈ V
4824, 47eqeltri 2694 . . 3 𝐻 ∈ V
49 feq1 5993 . . . 4 ( = 𝐻 → (:𝑍𝑆𝐻:𝑍𝑆))
50 nfcv 2761 . . . . . 6 𝑛
51 nfmpt1 4717 . . . . . . 7 𝑛(𝑛𝑍 ↦ (𝐶‘{𝑠𝑆 ∣ ((𝐹𝑛) “ 𝐴) = (𝑠 ∩ dom (𝐹𝑛))}))
5224, 51nfcxfr 2759 . . . . . 6 𝑛𝐻
5350, 52nfeq 2772 . . . . 5 𝑛 = 𝐻
54 fveq1 6157 . . . . . . 7 ( = 𝐻 → (𝑛) = (𝐻𝑛))
5554ineq1d 3797 . . . . . 6 ( = 𝐻 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
5655eqeq2d 2631 . . . . 5 ( = 𝐻 → (((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5753, 56ralbid 2979 . . . 4 ( = 𝐻 → (∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))))
5849, 57anbi12d 746 . . 3 ( = 𝐻 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))) ↔ (𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))))
5948, 58spcev 3290 . 2 ((𝐻:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝐻𝑛) ∩ dom (𝐹𝑛))) → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
6025, 44, 59syl2anc 692 1 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ 𝐴) = ((𝑛) ∩ dom (𝐹𝑛))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   = wceq 1480  ∃wex 1701  Ⅎwnf 1705   ∈ wcel 1987  ∀wral 2908  {crab 2912  Vcvv 3190   ∩ cin 3559   ↦ cmpt 4683  ◡ccnv 5083  dom cdm 5084  ran crn 5085   “ cima 5087  ⟶wf 5853  ‘cfv 5857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865 This theorem is referenced by:  smfpimcc  40351
 Copyright terms: Public domain W3C validator