Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimgtxr Structured version   Visualization version   GIF version

Theorem smfpimgtxr 43063
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded above is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimgtxr.x 𝑥𝐹
smfpimgtxr.s (𝜑𝑆 ∈ SAlg)
smfpimgtxr.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimgtxr.d 𝐷 = dom 𝐹
smfpimgtxr.a (𝜑𝐴 ∈ ℝ*)
Assertion
Ref Expression
smfpimgtxr (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝜑(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimgtxr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5071 . . . . . 6 (𝐴 = -∞ → (𝐴 < (𝐹𝑥) ↔ -∞ < (𝐹𝑥)))
21rabbidv 3482 . . . . 5 (𝐴 = -∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
32adantl 484 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ -∞ < (𝐹𝑥)})
4 smfpimgtxr.d . . . . . . . . 9 𝐷 = dom 𝐹
5 smfpimgtxr.x . . . . . . . . . 10 𝑥𝐹
65nfdm 5825 . . . . . . . . 9 𝑥dom 𝐹
74, 6nfcxfr 2977 . . . . . . . 8 𝑥𝐷
8 nfcv 2979 . . . . . . . 8 𝑦𝐷
9 nfv 1915 . . . . . . . 8 𝑦-∞ < (𝐹𝑥)
10 nfcv 2979 . . . . . . . . 9 𝑥-∞
11 nfcv 2979 . . . . . . . . 9 𝑥 <
12 nfcv 2979 . . . . . . . . . 10 𝑥𝑦
135, 12nffv 6682 . . . . . . . . 9 𝑥(𝐹𝑦)
1410, 11, 13nfbr 5115 . . . . . . . 8 𝑥-∞ < (𝐹𝑦)
15 fveq2 6672 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1615breq2d 5080 . . . . . . . 8 (𝑥 = 𝑦 → (-∞ < (𝐹𝑥) ↔ -∞ < (𝐹𝑦)))
177, 8, 9, 14, 16cbvrabw 3491 . . . . . . 7 {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)}
1817a1i 11 . . . . . 6 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = {𝑦𝐷 ∣ -∞ < (𝐹𝑦)})
19 nfv 1915 . . . . . . 7 𝑦𝜑
20 smfpimgtxr.s . . . . . . . . . 10 (𝜑𝑆 ∈ SAlg)
21 smfpimgtxr.f . . . . . . . . . 10 (𝜑𝐹 ∈ (SMblFn‘𝑆))
2220, 21, 4smff 43016 . . . . . . . . 9 (𝜑𝐹:𝐷⟶ℝ)
2322adantr 483 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝐹:𝐷⟶ℝ)
24 simpr 487 . . . . . . . 8 ((𝜑𝑦𝐷) → 𝑦𝐷)
2523, 24ffvelrnd 6854 . . . . . . 7 ((𝜑𝑦𝐷) → (𝐹𝑦) ∈ ℝ)
2619, 25pimgtmnf 43007 . . . . . 6 (𝜑 → {𝑦𝐷 ∣ -∞ < (𝐹𝑦)} = 𝐷)
27 eqidd 2824 . . . . . 6 (𝜑𝐷 = 𝐷)
2818, 26, 273eqtrd 2862 . . . . 5 (𝜑 → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
2928adantr 483 . . . 4 ((𝜑𝐴 = -∞) → {𝑥𝐷 ∣ -∞ < (𝐹𝑥)} = 𝐷)
303, 29eqtrd 2858 . . 3 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = 𝐷)
3120, 21, 4smfdmss 43017 . . . . . . 7 (𝜑𝐷 𝑆)
3220, 31restuni4 41394 . . . . . 6 (𝜑 (𝑆t 𝐷) = 𝐷)
3332eqcomd 2829 . . . . 5 (𝜑𝐷 = (𝑆t 𝐷))
3421dmexd 7617 . . . . . . . 8 (𝜑 → dom 𝐹 ∈ V)
354, 34eqeltrid 2919 . . . . . . 7 (𝜑𝐷 ∈ V)
36 eqid 2823 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
3720, 35, 36subsalsal 42649 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
3837salunid 42643 . . . . 5 (𝜑 (𝑆t 𝐷) ∈ (𝑆t 𝐷))
3933, 38eqeltrd 2915 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
4039adantr 483 . . 3 ((𝜑𝐴 = -∞) → 𝐷 ∈ (𝑆t 𝐷))
4130, 40eqeltrd 2915 . 2 ((𝜑𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
42 neqne 3026 . . . 4 𝐴 = -∞ → 𝐴 ≠ -∞)
4342adantl 484 . . 3 ((𝜑 ∧ ¬ 𝐴 = -∞) → 𝐴 ≠ -∞)
44 breq1 5071 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 < (𝐹𝑥) ↔ +∞ < (𝐹𝑥)))
4544rabbidv 3482 . . . . . . . 8 (𝐴 = +∞ → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
4645adantl 484 . . . . . . 7 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = {𝑥𝐷 ∣ +∞ < (𝐹𝑥)})
475, 22pimgtpnf2 42992 . . . . . . . 8 (𝜑 → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
4847adantr 483 . . . . . . 7 ((𝜑𝐴 = +∞) → {𝑥𝐷 ∣ +∞ < (𝐹𝑥)} = ∅)
4946, 48eqtrd 2858 . . . . . 6 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} = ∅)
50370sald 42640 . . . . . . 7 (𝜑 → ∅ ∈ (𝑆t 𝐷))
5150adantr 483 . . . . . 6 ((𝜑𝐴 = +∞) → ∅ ∈ (𝑆t 𝐷))
5249, 51eqeltrd 2915 . . . . 5 ((𝜑𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
5352adantlr 713 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
54 simpll 765 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝜑)
55 smfpimgtxr.a . . . . . . 7 (𝜑𝐴 ∈ ℝ*)
5654, 55syl 17 . . . . . 6 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ*)
57 simplr 767 . . . . . 6 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ -∞)
58 neqne 3026 . . . . . . 7 𝐴 = +∞ → 𝐴 ≠ +∞)
5958adantl 484 . . . . . 6 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ≠ +∞)
6056, 57, 59xrred 41640 . . . . 5 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → 𝐴 ∈ ℝ)
6120adantr 483 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑆 ∈ SAlg)
6221adantr 483 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆))
63 simpr 487 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
645, 61, 62, 4, 63smfpreimagtf 43051 . . . . 5 ((𝜑𝐴 ∈ ℝ) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6554, 60, 64syl2anc 586 . . . 4 (((𝜑𝐴 ≠ -∞) ∧ ¬ 𝐴 = +∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6653, 65pm2.61dan 811 . . 3 ((𝜑𝐴 ≠ -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6743, 66syldan 593 . 2 ((𝜑 ∧ ¬ 𝐴 = -∞) → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
6841, 67pm2.61dan 811 1 (𝜑 → {𝑥𝐷𝐴 < (𝐹𝑥)} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wnfc 2963  wne 3018  {crab 3144  Vcvv 3496  c0 4293   cuni 4840   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  cr 10538  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  t crest 16696  SAlgcsalg 42600  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cc 9859  ax-ac2 9887  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-acn 9373  df-ac 9544  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-ioo 12745  df-ico 12747  df-fl 13165  df-rest 16698  df-salg 42601  df-smblfn 42985
This theorem is referenced by:  smfpimgtxrmpt  43067
  Copyright terms: Public domain W3C validator