Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimioo Structured version   Visualization version   GIF version

Theorem smfpimioo 43056
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimioo.s (𝜑𝑆 ∈ SAlg)
smfpimioo.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimioo.d 𝐷 = dom 𝐹
smfpimioo.a (𝜑𝐴 ∈ ℝ*)
smfpimioo.b (𝜑𝐵 ∈ ℝ*)
Assertion
Ref Expression
smfpimioo (𝜑 → (𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆t 𝐷))

Proof of Theorem smfpimioo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 smfpimioo.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
2 smfpimioo.f . . . . . . 7 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpimioo.d . . . . . . 7 𝐷 = dom 𝐹
41, 2, 3smff 43003 . . . . . 6 (𝜑𝐹:𝐷⟶ℝ)
54feqmptd 6727 . . . . 5 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
65cnveqd 5740 . . . 4 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
76imaeq1d 5922 . . 3 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) = ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)))
8 eqid 2821 . . . . 5 (𝑥𝐷 ↦ (𝐹𝑥)) = (𝑥𝐷 ↦ (𝐹𝑥))
98mptpreima 6086 . . . 4 ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)}
109a1i 11 . . 3 (𝜑 → ((𝑥𝐷 ↦ (𝐹𝑥)) “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)})
117, 10eqtrd 2856 . 2 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)})
12 nfv 1911 . . 3 𝑥𝜑
131uniexd 7462 . . . 4 (𝜑 𝑆 ∈ V)
141, 2, 3smfdmss 43004 . . . 4 (𝜑𝐷 𝑆)
1513, 14ssexd 5220 . . 3 (𝜑𝐷 ∈ V)
164ffvelrnda 6845 . . 3 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
175, 2eqeltrrd 2914 . . 3 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
18 smfpimioo.a . . 3 (𝜑𝐴 ∈ ℝ*)
19 smfpimioo.b . . 3 (𝜑𝐵 ∈ ℝ*)
2012, 1, 15, 16, 17, 18, 19smfpimioompt 43055 . 2 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) ∈ (𝐴(,)𝐵)} ∈ (𝑆t 𝐷))
2111, 20eqeltrd 2913 1 (𝜑 → (𝐹 “ (𝐴(,)𝐵)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494   cuni 4831  cmpt 5138  ccnv 5548  dom cdm 5549  cima 5552  cfv 6349  (class class class)co 7150  cr 10530  *cxr 10668  (,)cioo 12732  t crest 16688  SAlgcsalg 42587  SMblFncsmblfn 42971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-ac2 9879  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-card 9362  df-acn 9365  df-ac 9536  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-ioo 12736  df-ico 12738  df-fl 13156  df-rest 16690  df-salg 42588  df-smblfn 42972
This theorem is referenced by:  smfres  43059  smfpimbor1lem1  43067
  Copyright terms: Public domain W3C validator