Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimioompt Structured version   Visualization version   GIF version

Theorem smfpimioompt 40297
 Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimioompt.x 𝑥𝜑
smfpimioompt.s (𝜑𝑆 ∈ SAlg)
smfpimioompt.a (𝜑𝐴𝑉)
smfpimioompt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
smfpimioompt.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimioompt.l (𝜑𝐿 ∈ ℝ*)
smfpimioompt.r (𝜑𝑅 ∈ ℝ*)
Assertion
Ref Expression
smfpimioompt (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfpimioompt
StepHypRef Expression
1 smfpimioompt.x . . 3 𝑥𝜑
2 smfpimioompt.l . . 3 (𝜑𝐿 ∈ ℝ*)
3 smfpimioompt.r . . 3 (𝜑𝑅 ∈ ℝ*)
4 smfpimioompt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
5 smfpimioompt.m . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
6 eqid 2621 . . . . . . 7 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
74, 5, 6smff 40245 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
8 eqid 2621 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimioompt.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑊)
101, 8, 9dmmptdf 38888 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1110feq2d 5988 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ ↔ (𝑥𝐴𝐵):𝐴⟶ℝ))
127, 11mpbid 222 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
1312fvmptelrn 38899 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1413rexrd 10033 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
151, 2, 3, 14pimiooltgt 40225 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
16 smfpimioompt.a . . . 4 (𝜑𝐴𝑉)
17 eqid 2621 . . . 4 (𝑆t 𝐴) = (𝑆t 𝐴)
184, 16, 17subsalsal 39881 . . 3 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
191, 4, 9, 5, 3smfpimltxrmpt 40271 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
201, 4, 9, 5, 2smfpimgtxrmpt 40296 . . 3 (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
2118, 19, 20salincld 39874 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ∈ (𝑆t 𝐴))
2215, 21eqeltrd 2698 1 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆t 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384  Ⅎwnf 1705   ∈ wcel 1987  {crab 2911   ∩ cin 3554   class class class wbr 4613   ↦ cmpt 4673  dom cdm 5074  ⟶wf 5843  ‘cfv 5847  (class class class)co 6604  ℝcr 9879  ℝ*cxr 10017   < clt 10018  (,)cioo 12117   ↾t crest 16002  SAlgcsalg 39832  SMblFncsmblfn 40213 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cc 9201  ax-ac2 9229  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-inf 8293  df-card 8709  df-acn 8712  df-ac 8883  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-ioo 12121  df-ico 12123  df-fl 12533  df-rest 16004  df-salg 39833  df-smblfn 40214 This theorem is referenced by:  smfpimioo  40298  smfresal  40299  smfrec  40300  smfmullem4  40305
 Copyright terms: Public domain W3C validator