Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimioompt Structured version   Visualization version   GIF version

Theorem smfpimioompt 43051
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimioompt.x 𝑥𝜑
smfpimioompt.s (𝜑𝑆 ∈ SAlg)
smfpimioompt.a (𝜑𝐴𝑉)
smfpimioompt.b ((𝜑𝑥𝐴) → 𝐵𝑊)
smfpimioompt.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfpimioompt.l (𝜑𝐿 ∈ ℝ*)
smfpimioompt.r (𝜑𝑅 ∈ ℝ*)
Assertion
Ref Expression
smfpimioompt (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆t 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐿   𝑥,𝑅
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem smfpimioompt
StepHypRef Expression
1 smfpimioompt.x . . 3 𝑥𝜑
2 smfpimioompt.l . . 3 (𝜑𝐿 ∈ ℝ*)
3 smfpimioompt.r . . 3 (𝜑𝑅 ∈ ℝ*)
4 smfpimioompt.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
5 smfpimioompt.m . . . . . . 7 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
6 eqid 2819 . . . . . . 7 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
74, 5, 6smff 42999 . . . . . 6 (𝜑 → (𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ)
8 eqid 2819 . . . . . . . 8 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
9 smfpimioompt.b . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵𝑊)
101, 8, 9dmmptdf 41477 . . . . . . 7 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
1110feq2d 6493 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵):dom (𝑥𝐴𝐵)⟶ℝ ↔ (𝑥𝐴𝐵):𝐴⟶ℝ))
127, 11mpbid 234 . . . . 5 (𝜑 → (𝑥𝐴𝐵):𝐴⟶ℝ)
1312fvmptelrn 6870 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
1413rexrd 10683 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
151, 2, 3, 14pimiooltgt 42979 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} = ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}))
16 smfpimioompt.a . . . 4 (𝜑𝐴𝑉)
17 eqid 2819 . . . 4 (𝑆t 𝐴) = (𝑆t 𝐴)
184, 16, 17subsalsal 42632 . . 3 (𝜑 → (𝑆t 𝐴) ∈ SAlg)
191, 4, 9, 5, 3smfpimltxrmpt 43025 . . 3 (𝜑 → {𝑥𝐴𝐵 < 𝑅} ∈ (𝑆t 𝐴))
201, 4, 9, 5, 2smfpimgtxrmpt 43050 . . 3 (𝜑 → {𝑥𝐴𝐿 < 𝐵} ∈ (𝑆t 𝐴))
2118, 19, 20salincld 42625 . 2 (𝜑 → ({𝑥𝐴𝐵 < 𝑅} ∩ {𝑥𝐴𝐿 < 𝐵}) ∈ (𝑆t 𝐴))
2215, 21eqeltrd 2911 1 (𝜑 → {𝑥𝐴𝐵 ∈ (𝐿(,)𝑅)} ∈ (𝑆t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wnf 1778  wcel 2108  {crab 3140  cin 3933   class class class wbr 5057  cmpt 5137  dom cdm 5548  wf 6344  cfv 6348  (class class class)co 7148  cr 10528  *cxr 10666   < clt 10667  (,)cioo 12730  t crest 16686  SAlgcsalg 42583  SMblFncsmblfn 42967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-pm 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-ioo 12734  df-ico 12736  df-fl 13154  df-rest 16688  df-salg 42584  df-smblfn 42968
This theorem is referenced by:  smfpimioo  43052  smfresal  43053  smfrec  43054  smfmullem4  43059
  Copyright terms: Public domain W3C validator