Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpreimaltf Structured version   Visualization version   GIF version

Theorem smfpreimaltf 43020
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpreimaltf.x 𝑥𝐹
smfpreimaltf.s (𝜑𝑆 ∈ SAlg)
smfpreimaltf.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpreimaltf.d 𝐷 = dom 𝐹
smfpreimaltf.a (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfpreimaltf (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpreimaltf
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smfpreimaltf.a . 2 (𝜑𝐴 ∈ ℝ)
2 smfpreimaltf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
3 smfpreimaltf.x . . . . 5 𝑥𝐹
4 smfpreimaltf.s . . . . 5 (𝜑𝑆 ∈ SAlg)
5 smfpreimaltf.d . . . . 5 𝐷 = dom 𝐹
63, 4, 5issmff 43018 . . . 4 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
72, 6mpbid 234 . . 3 (𝜑 → (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
87simp3d 1140 . 2 (𝜑 → ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
9 breq2 5072 . . . . 5 (𝑎 = 𝐴 → ((𝐹𝑥) < 𝑎 ↔ (𝐹𝑥) < 𝐴))
109rabbidv 3482 . . . 4 (𝑎 = 𝐴 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴})
1110eleq1d 2899 . . 3 (𝑎 = 𝐴 → ({𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷)))
1211rspcva 3623 . 2 ((𝐴 ∈ ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)) → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
131, 8, 12syl2anc 586 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) < 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wnfc 2963  wral 3140  {crab 3144  wss 3938   cuni 4840   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  cr 10538   < clt 10677  t crest 16696  SAlgcsalg 42600  SMblFncsmblfn 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-pre-lttri 10613  ax-pre-lttrn 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-ioo 12745  df-ico 12747  df-smblfn 42985
This theorem is referenced by:  smfpimltmpt  43030  smfpimltxr  43031
  Copyright terms: Public domain W3C validator