![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfres | Structured version Visualization version GIF version |
Description: The restriction of sigma-measurable function is sigma-measurable. Proposition 121E (h) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfres.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfres.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfres.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
smfres | ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1883 | . 2 ⊢ Ⅎ𝑎𝜑 | |
2 | smfres.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
3 | inss1 3866 | . . . 4 ⊢ (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ dom 𝐹) |
5 | smfres.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
6 | eqid 2651 | . . . 4 ⊢ dom 𝐹 = dom 𝐹 | |
7 | 2, 5, 6 | smfdmss 41263 | . . 3 ⊢ (𝜑 → dom 𝐹 ⊆ ∪ 𝑆) |
8 | 4, 7 | sstrd 3646 | . 2 ⊢ (𝜑 → (dom 𝐹 ∩ 𝐴) ⊆ ∪ 𝑆) |
9 | 2, 5, 6 | smff 41262 | . . 3 ⊢ (𝜑 → 𝐹:dom 𝐹⟶ℝ) |
10 | fresin 6111 | . . 3 ⊢ (𝐹:dom 𝐹⟶ℝ → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
12 | ovexd 6720 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t dom 𝐹) ∈ V) | |
13 | smfres.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
15 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
16 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑆)) |
17 | mnfxr 10134 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → -∞ ∈ ℝ*) |
19 | rexr 10123 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℝ*) | |
20 | 19 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ*) |
21 | 15, 16, 6, 18, 20 | smfpimioo 41315 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡𝐹 “ (-∞(,)𝑎)) ∈ (𝑆 ↾t dom 𝐹)) |
22 | eqid 2651 | . . . 4 ⊢ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) | |
23 | 12, 14, 21, 22 | elrestd 39605 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
24 | 9 | ffund 6087 | . . . . . . . 8 ⊢ (𝜑 → Fun 𝐹) |
25 | respreima 6384 | . . . . . . . 8 ⊢ (Fun 𝐹 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) | |
26 | 24, 25 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
27 | 26 | eqcomd 2657 | . . . . . 6 ⊢ (𝜑 → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) = (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎))) |
29 | 11 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝐹 ↾ 𝐴):(dom 𝐹 ∩ 𝐴)⟶ℝ) |
30 | 29, 20 | preimaioomnf 41250 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (◡(𝐹 ↾ 𝐴) “ (-∞(,)𝑎)) = {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎}) |
31 | 28, 30 | eqtr2d 2686 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} = ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴)) |
32 | 5 | dmexd 39736 | . . . . . . 7 ⊢ (𝜑 → dom 𝐹 ∈ V) |
33 | restco 21016 | . . . . . . 7 ⊢ ((𝑆 ∈ SAlg ∧ dom 𝐹 ∈ V ∧ 𝐴 ∈ 𝑉) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) | |
34 | 2, 32, 13, 33 | syl3anc 1366 | . . . . . 6 ⊢ (𝜑 → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
35 | 34 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ((𝑆 ↾t dom 𝐹) ↾t 𝐴) = (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
36 | 35 | eqcomd 2657 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) = ((𝑆 ↾t dom 𝐹) ↾t 𝐴)) |
37 | 31, 36 | eleq12d 2724 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → ({𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴)) ↔ ((◡𝐹 “ (-∞(,)𝑎)) ∩ 𝐴) ∈ ((𝑆 ↾t dom 𝐹) ↾t 𝐴))) |
38 | 23, 37 | mpbird 247 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (dom 𝐹 ∩ 𝐴) ∣ ((𝐹 ↾ 𝐴)‘𝑥) < 𝑎} ∈ (𝑆 ↾t (dom 𝐹 ∩ 𝐴))) |
39 | 1, 2, 8, 11, 38 | issmfd 41265 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {crab 2945 Vcvv 3231 ∩ cin 3606 ⊆ wss 3607 ∪ cuni 4468 class class class wbr 4685 ◡ccnv 5142 dom cdm 5143 ↾ cres 5145 “ cima 5146 Fun wfun 5920 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 -∞cmnf 10110 ℝ*cxr 10111 < clt 10112 (,)cioo 12213 ↾t crest 16128 SAlgcsalg 40846 SMblFncsmblfn 41230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-inf2 8576 ax-cc 9295 ax-ac2 9323 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-inf 8390 df-card 8803 df-acn 8806 df-ac 8977 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-q 11827 df-rp 11871 df-ioo 12217 df-ico 12219 df-fl 12633 df-rest 16130 df-salg 40847 df-smblfn 41231 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |