Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfresal Structured version   Visualization version   GIF version

Theorem smfresal 42940
Description: Given a sigma-measurable function, the subsets of whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfresal.s (𝜑𝑆 ∈ SAlg)
smfresal.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfresal.d 𝐷 = dom 𝐹
smfresal.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfresal (𝜑𝑇 ∈ SAlg)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hint:   𝑇(𝑒)

Proof of Theorem smfresal
Dummy variables 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfresal.t . . . 4 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
2 reex 10616 . . . . 5 ℝ ∈ V
32pwex 5272 . . . 4 𝒫 ℝ ∈ V
41, 3rabex2 5228 . . 3 𝑇 ∈ V
54a1i 11 . 2 (𝜑𝑇 ∈ V)
6 0elpw 5247 . . . . 5 ∅ ∈ 𝒫 ℝ
76a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 ℝ)
8 ima0 5938 . . . . . 6 (𝐹 “ ∅) = ∅
98a1i 11 . . . . 5 (𝜑 → (𝐹 “ ∅) = ∅)
10 smfresal.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
1110uniexd 7457 . . . . . . . 8 (𝜑 𝑆 ∈ V)
12 smfresal.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
13 smfresal.d . . . . . . . . 9 𝐷 = dom 𝐹
1410, 12, 13smfdmss 42887 . . . . . . . 8 (𝜑𝐷 𝑆)
1511, 14ssexd 5219 . . . . . . 7 (𝜑𝐷 ∈ V)
16 eqid 2818 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
1710, 15, 16subsalsal 42519 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
18170sald 42510 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐷))
199, 18eqeltrd 2910 . . . 4 (𝜑 → (𝐹 “ ∅) ∈ (𝑆t 𝐷))
207, 19jca 512 . . 3 (𝜑 → (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
21 imaeq2 5918 . . . . 5 (𝑒 = ∅ → (𝐹𝑒) = (𝐹 “ ∅))
2221eleq1d 2894 . . . 4 (𝑒 = ∅ → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2322, 1elrab2 3680 . . 3 (∅ ∈ 𝑇 ↔ (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2420, 23sylibr 235 . 2 (𝜑 → ∅ ∈ 𝑇)
25 eqid 2818 . 2 𝑇 = 𝑇
26 nfv 1906 . . . . . . 7 𝑦𝜑
27 nfcv 2974 . . . . . . . . . . . . 13 𝑒𝑦
28 nfrab1 3382 . . . . . . . . . . . . . 14 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
291, 28nfcxfr 2972 . . . . . . . . . . . . 13 𝑒𝑇
3027, 29eluni2f 41246 . . . . . . . . . . . 12 (𝑦 𝑇 ↔ ∃𝑒𝑇 𝑦𝑒)
3130biimpi 217 . . . . . . . . . . 11 (𝑦 𝑇 → ∃𝑒𝑇 𝑦𝑒)
3231adantl 482 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → ∃𝑒𝑇 𝑦𝑒)
33 nfv 1906 . . . . . . . . . . . 12 𝑒𝜑
3429nfuni 4837 . . . . . . . . . . . . 13 𝑒 𝑇
3527, 34nfel 2989 . . . . . . . . . . . 12 𝑒 𝑦 𝑇
3633, 35nfan 1891 . . . . . . . . . . 11 𝑒(𝜑𝑦 𝑇)
3727nfel1 2991 . . . . . . . . . . 11 𝑒 𝑦 ∈ ℝ
381eleq2i 2901 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
3938biimpi 217 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
40 rabidim1 3378 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
42 elpwi 4547 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑒𝑇𝑒 ⊆ ℝ)
4443adantr 481 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑒 ⊆ ℝ)
45 simpr 485 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑦𝑒)
4644, 45sseldd 3965 . . . . . . . . . . . . 13 ((𝑒𝑇𝑦𝑒) → 𝑦 ∈ ℝ)
4746ex 413 . . . . . . . . . . . 12 (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ))
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 𝑇) → (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ)))
4936, 37, 48rexlimd 3314 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → (∃𝑒𝑇 𝑦𝑒𝑦 ∈ ℝ))
5032, 49mpd 15 . . . . . . . . 9 ((𝜑𝑦 𝑇) → 𝑦 ∈ ℝ)
5150ex 413 . . . . . . . 8 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
52 ovexd 7180 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V)
53 ioossre 12786 . . . . . . . . . . . . . . . 16 ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ)
5552, 54elpwd 4546 . . . . . . . . . . . . . 14 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5655adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5710, 12, 13smff 42886 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐷⟶ℝ)
5857ffnd 6508 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝐷)
59 fncnvima2 6823 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐷 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6058, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6160adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
62 nfv 1906 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑦 ∈ ℝ)
6310adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑆 ∈ SAlg)
6415adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝐷 ∈ V)
6557adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝐹:𝐷⟶ℝ)
66 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝑥𝐷)
6765, 66ffvelrnd 6844 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6867adantlr 711 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6957feqmptd 6726 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
7069eqcomd 2824 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) = 𝐹)
7170, 12eqeltrd 2910 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
7271adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
73 peano2rem 10941 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
7473rexrd 10679 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
7574adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ*)
76 peano2re 10801 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
7776rexrd 10679 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
7877adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ*)
7962, 63, 64, 68, 72, 75, 78smfpimioompt 42938 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆t 𝐷))
8061, 79eqeltrd 2910 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷))
8156, 80jca 512 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
82 imaeq2 5918 . . . . . . . . . . . . . 14 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝐹𝑒) = (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))))
8382eleq1d 2894 . . . . . . . . . . . . 13 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8483, 1elrab2 3680 . . . . . . . . . . . 12 (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8581, 84sylibr 235 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇)
86 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
87 ltm1 11470 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
88 ltp1 11468 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8974, 77, 86, 87, 88eliood 41649 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
9089adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
91 nfv 1906 . . . . . . . . . . . 12 𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))
92 nfcv 2974 . . . . . . . . . . . 12 𝑒((𝑦 − 1)(,)(𝑦 + 1))
93 eleq2 2898 . . . . . . . . . . . 12 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦𝑒𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))))
9491, 92, 29, 93rspcef 41211 . . . . . . . . . . 11 ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒𝑇 𝑦𝑒)
9585, 90, 94syl2anc 584 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∃𝑒𝑇 𝑦𝑒)
9695, 30sylibr 235 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 𝑇)
9796ex 413 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ → 𝑦 𝑇))
9851, 97impbid 213 . . . . . . 7 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
9926, 98alrimi 2203 . . . . . 6 (𝜑 → ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
100 dfcleq 2812 . . . . . 6 ( 𝑇 = ℝ ↔ ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
10199, 100sylibr 235 . . . . 5 (𝜑 𝑇 = ℝ)
102101difeq1d 4095 . . . 4 (𝜑 → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
103102adantr 481 . . 3 ((𝜑𝑥𝑇) → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
104 difss 4105 . . . . . . 7 (ℝ ∖ 𝑥) ⊆ ℝ
1052, 104ssexi 5217 . . . . . . . 8 (ℝ ∖ 𝑥) ∈ V
106 elpwg 4541 . . . . . . . 8 ((ℝ ∖ 𝑥) ∈ V → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ))
107105, 106ax-mp 5 . . . . . . 7 ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)
108104, 107mpbir 232 . . . . . 6 (ℝ ∖ 𝑥) ∈ 𝒫 ℝ
109108a1i 11 . . . . 5 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ)
11057ffund 6511 . . . . . . . . 9 (𝜑 → Fun 𝐹)
111 difpreima 6827 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
112110, 111syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
113 fimacnv 6831 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → (𝐹 “ ℝ) = 𝐷)
11457, 113syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℝ) = 𝐷)
11510, 14restuni4 41264 . . . . . . . . . 10 (𝜑 (𝑆t 𝐷) = 𝐷)
116114, 115eqtr4d 2856 . . . . . . . . 9 (𝜑 → (𝐹 “ ℝ) = (𝑆t 𝐷))
117116difeq1d 4095 . . . . . . . 8 (𝜑 → ((𝐹 “ ℝ) ∖ (𝐹𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
118112, 117eqtrd 2853 . . . . . . 7 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
119118adantr 481 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
12017adantr 481 . . . . . . 7 ((𝜑𝑥𝑇) → (𝑆t 𝐷) ∈ SAlg)
121 imaeq2 5918 . . . . . . . . . . . 12 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
122121eleq1d 2894 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝑥) ∈ (𝑆t 𝐷)))
123122, 1elrab2 3680 . . . . . . . . . 10 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
124123biimpi 217 . . . . . . . . 9 (𝑥𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
125124simprd 496 . . . . . . . 8 (𝑥𝑇 → (𝐹𝑥) ∈ (𝑆t 𝐷))
126125adantl 482 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (𝑆t 𝐷))
127120, 126saldifcld 42507 . . . . . 6 ((𝜑𝑥𝑇) → ( (𝑆t 𝐷) ∖ (𝐹𝑥)) ∈ (𝑆t 𝐷))
128119, 127eqeltrd 2910 . . . . 5 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷))
129109, 128jca 512 . . . 4 ((𝜑𝑥𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
130 imaeq2 5918 . . . . . 6 (𝑒 = (ℝ ∖ 𝑥) → (𝐹𝑒) = (𝐹 “ (ℝ ∖ 𝑥)))
131130eleq1d 2894 . . . . 5 (𝑒 = (ℝ ∖ 𝑥) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
132131, 1elrab2 3680 . . . 4 ((ℝ ∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
133129, 132sylibr 235 . . 3 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇)
134103, 133eqeltrd 2910 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
135 nnex 11632 . . . . . . . 8 ℕ ∈ V
136 fvex 6676 . . . . . . . 8 (𝑔𝑛) ∈ V
137135, 136iunex 7658 . . . . . . 7 𝑛 ∈ ℕ (𝑔𝑛) ∈ V
138137a1i 11 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ V)
139 ffvelrn 6841 . . . . . . . 8 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ∈ 𝑇)
1401eleq2i 2901 . . . . . . . . . . 11 ((𝑔𝑛) ∈ 𝑇 ↔ (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
141140biimpi 217 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
142 elrabi 3672 . . . . . . . . . 10 ((𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → (𝑔𝑛) ∈ 𝒫 ℝ)
143141, 142syl 17 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ 𝒫 ℝ)
144 elpwi 4547 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝒫 ℝ → (𝑔𝑛) ⊆ ℝ)
145143, 144syl 17 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ⊆ ℝ)
146139, 145syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ⊆ ℝ)
147146iunssd 4965 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ⊆ ℝ)
148138, 147elpwd 4546 . . . . 5 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
149148adantl 482 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
150 imaiun 6995 . . . . . 6 (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛))
151150a1i 11 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)))
15217adantr 481 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → (𝑆t 𝐷) ∈ SAlg)
153 nnct 13337 . . . . . . 7 ℕ ≼ ω
154153a1i 11 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → ℕ ≼ ω)
155 imaeq2 5918 . . . . . . . . . . . 12 (𝑒 = (𝑔𝑛) → (𝐹𝑒) = (𝐹 “ (𝑔𝑛)))
156155eleq1d 2894 . . . . . . . . . . 11 (𝑒 = (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
157156, 1elrab2 3680 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 ↔ ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
158157biimpi 217 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
159158simprd 496 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
160139, 159syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
161160adantll 710 . . . . . 6 (((𝜑𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
162152, 154, 161saliuncl 42484 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
163151, 162eqeltrd 2910 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷))
164149, 163jca 512 . . 3 ((𝜑𝑔:ℕ⟶𝑇) → ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
165 imaeq2 5918 . . . . 5 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → (𝐹𝑒) = (𝐹 𝑛 ∈ ℕ (𝑔𝑛)))
166165eleq1d 2894 . . . 4 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
167166, 1elrab2 3680 . . 3 ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
168164, 167sylibr 235 . 2 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇)
1695, 24, 25, 134, 168issalnnd 42505 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1526   = wceq 1528  wcel 2105  wrex 3136  {crab 3139  Vcvv 3492  cdif 3930  wss 3933  c0 4288  𝒫 cpw 4535   cuni 4830   ciun 4910   class class class wbr 5057  cmpt 5137  ccnv 5547  dom cdm 5548  cima 5551  Fun wfun 6342   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  ωcom 7569  cdom 8495  cr 10524  1c1 10526   + caddc 10528  *cxr 10662  cmin 10858  cn 11626  (,)cioo 12726  t crest 16682  SAlgcsalg 42470  SMblFncsmblfn 42854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ico 12732  df-fl 13150  df-rest 16684  df-salg 42471  df-smblfn 42855
This theorem is referenced by:  smfpimbor1lem1  42950  smfpimbor1lem2  42951
  Copyright terms: Public domain W3C validator