Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfresal Structured version   Visualization version   GIF version

Theorem smfresal 40758
Description: Given a sigma-measurable function, the subsets of whose preimage is in the sigma-algebra induced by the function's domain, form a sigma-algebra. First part of the proof of Proposition 121E (f) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfresal.s (𝜑𝑆 ∈ SAlg)
smfresal.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfresal.d 𝐷 = dom 𝐹
smfresal.t 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
Assertion
Ref Expression
smfresal (𝜑𝑇 ∈ SAlg)
Distinct variable groups:   𝐷,𝑒   𝑒,𝐹   𝑆,𝑒   𝜑,𝑒
Allowed substitution hint:   𝑇(𝑒)

Proof of Theorem smfresal
Dummy variables 𝑥 𝑛 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfresal.t . . . 4 𝑇 = {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
2 reex 10012 . . . . 5 ℝ ∈ V
32pwex 4839 . . . 4 𝒫 ℝ ∈ V
41, 3rabex2 4806 . . 3 𝑇 ∈ V
54a1i 11 . 2 (𝜑𝑇 ∈ V)
6 0elpw 4825 . . . . 5 ∅ ∈ 𝒫 ℝ
76a1i 11 . . . 4 (𝜑 → ∅ ∈ 𝒫 ℝ)
8 ima0 5469 . . . . . 6 (𝐹 “ ∅) = ∅
98a1i 11 . . . . 5 (𝜑 → (𝐹 “ ∅) = ∅)
10 smfresal.s . . . . . . 7 (𝜑𝑆 ∈ SAlg)
1110uniexd 39101 . . . . . . . 8 (𝜑 𝑆 ∈ V)
12 smfresal.f . . . . . . . . 9 (𝜑𝐹 ∈ (SMblFn‘𝑆))
13 smfresal.d . . . . . . . . 9 𝐷 = dom 𝐹
1410, 12, 13smfdmss 40705 . . . . . . . 8 (𝜑𝐷 𝑆)
1511, 14ssexd 4796 . . . . . . 7 (𝜑𝐷 ∈ V)
16 eqid 2620 . . . . . . 7 (𝑆t 𝐷) = (𝑆t 𝐷)
1710, 15, 16subsalsal 40340 . . . . . 6 (𝜑 → (𝑆t 𝐷) ∈ SAlg)
18170sald 40331 . . . . 5 (𝜑 → ∅ ∈ (𝑆t 𝐷))
199, 18eqeltrd 2699 . . . 4 (𝜑 → (𝐹 “ ∅) ∈ (𝑆t 𝐷))
207, 19jca 554 . . 3 (𝜑 → (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
21 imaeq2 5450 . . . . 5 (𝑒 = ∅ → (𝐹𝑒) = (𝐹 “ ∅))
2221eleq1d 2684 . . . 4 (𝑒 = ∅ → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2322, 1elrab2 3360 . . 3 (∅ ∈ 𝑇 ↔ (∅ ∈ 𝒫 ℝ ∧ (𝐹 “ ∅) ∈ (𝑆t 𝐷)))
2420, 23sylibr 224 . 2 (𝜑 → ∅ ∈ 𝑇)
25 eqid 2620 . 2 𝑇 = 𝑇
26 nfv 1841 . . . . . . 7 𝑦𝜑
27 nfcv 2762 . . . . . . . . . . . . 13 𝑒𝑦
28 nfrab1 3117 . . . . . . . . . . . . . 14 𝑒{𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)}
291, 28nfcxfr 2760 . . . . . . . . . . . . 13 𝑒𝑇
3027, 29eluni2f 39106 . . . . . . . . . . . 12 (𝑦 𝑇 ↔ ∃𝑒𝑇 𝑦𝑒)
3130biimpi 206 . . . . . . . . . . 11 (𝑦 𝑇 → ∃𝑒𝑇 𝑦𝑒)
3231adantl 482 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → ∃𝑒𝑇 𝑦𝑒)
33 nfv 1841 . . . . . . . . . . . 12 𝑒𝜑
3429nfuni 4433 . . . . . . . . . . . . 13 𝑒 𝑇
3527, 34nfel 2774 . . . . . . . . . . . 12 𝑒 𝑦 𝑇
3633, 35nfan 1826 . . . . . . . . . . 11 𝑒(𝜑𝑦 𝑇)
3727nfel1 2776 . . . . . . . . . . 11 𝑒 𝑦 ∈ ℝ
381eleq2i 2691 . . . . . . . . . . . . . . . . . 18 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
3938biimpi 206 . . . . . . . . . . . . . . . . 17 (𝑒𝑇𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
40 rabidim1 3112 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → 𝑒 ∈ 𝒫 ℝ)
4139, 40syl 17 . . . . . . . . . . . . . . . 16 (𝑒𝑇𝑒 ∈ 𝒫 ℝ)
42 elpwi 4159 . . . . . . . . . . . . . . . 16 (𝑒 ∈ 𝒫 ℝ → 𝑒 ⊆ ℝ)
4341, 42syl 17 . . . . . . . . . . . . . . 15 (𝑒𝑇𝑒 ⊆ ℝ)
4443adantr 481 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑒 ⊆ ℝ)
45 simpr 477 . . . . . . . . . . . . . 14 ((𝑒𝑇𝑦𝑒) → 𝑦𝑒)
4644, 45sseldd 3596 . . . . . . . . . . . . 13 ((𝑒𝑇𝑦𝑒) → 𝑦 ∈ ℝ)
4746ex 450 . . . . . . . . . . . 12 (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ))
4847a1i 11 . . . . . . . . . . 11 ((𝜑𝑦 𝑇) → (𝑒𝑇 → (𝑦𝑒𝑦 ∈ ℝ)))
4936, 37, 48rexlimd 3022 . . . . . . . . . 10 ((𝜑𝑦 𝑇) → (∃𝑒𝑇 𝑦𝑒𝑦 ∈ ℝ))
5032, 49mpd 15 . . . . . . . . 9 ((𝜑𝑦 𝑇) → 𝑦 ∈ ℝ)
5150ex 450 . . . . . . . 8 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
52 ovexd 6665 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ V)
53 ioossre 12220 . . . . . . . . . . . . . . . 16 ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ
5453a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ⊆ ℝ)
5552, 54elpwd 4158 . . . . . . . . . . . . . 14 (𝜑 → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5655adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ)
5710, 12, 13smff 40704 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐷⟶ℝ)
5857ffnd 6033 . . . . . . . . . . . . . . . 16 (𝜑𝐹 Fn 𝐷)
59 fncnvima2 6325 . . . . . . . . . . . . . . . 16 (𝐹 Fn 𝐷 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6058, 59syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
6160adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) = {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))})
62 nfv 1841 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑦 ∈ ℝ)
6310adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝑆 ∈ SAlg)
6415adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → 𝐷 ∈ V)
6557adantr 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝐹:𝐷⟶ℝ)
66 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐷) → 𝑥𝐷)
6765, 66ffvelrnd 6346 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6867adantlr 750 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
6957feqmptd 6236 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 = (𝑥𝐷 ↦ (𝐹𝑥)))
7069eqcomd 2626 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) = 𝐹)
7170, 12eqeltrd 2699 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
7271adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐷 ↦ (𝐹𝑥)) ∈ (SMblFn‘𝑆))
73 peano2rem 10333 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ)
7473rexrd 10074 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 − 1) ∈ ℝ*)
7574adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 − 1) ∈ ℝ*)
76 peano2re 10194 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ)
7776rexrd 10074 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ → (𝑦 + 1) ∈ ℝ*)
7877adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℝ) → (𝑦 + 1) ∈ ℝ*)
7962, 63, 64, 68, 72, 75, 78smfpimioompt 40756 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℝ) → {𝑥𝐷 ∣ (𝐹𝑥) ∈ ((𝑦 − 1)(,)(𝑦 + 1))} ∈ (𝑆t 𝐷))
8061, 79eqeltrd 2699 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℝ) → (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷))
8156, 80jca 554 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
82 imaeq2 5450 . . . . . . . . . . . . . 14 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝐹𝑒) = (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))))
8382eleq1d 2684 . . . . . . . . . . . . 13 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8483, 1elrab2 3360 . . . . . . . . . . . 12 (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇 ↔ (((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝒫 ℝ ∧ (𝐹 “ ((𝑦 − 1)(,)(𝑦 + 1))) ∈ (𝑆t 𝐷)))
8581, 84sylibr 224 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → ((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇)
86 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ)
87 ltm1 10848 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 − 1) < 𝑦)
88 ltp1 10846 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → 𝑦 < (𝑦 + 1))
8974, 77, 86, 87, 88eliood 39523 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
9089adantl 482 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1)))
91 nfv 1841 . . . . . . . . . . . 12 𝑒 𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))
92 nfcv 2762 . . . . . . . . . . . 12 𝑒((𝑦 − 1)(,)(𝑦 + 1))
93 eleq2 2688 . . . . . . . . . . . 12 (𝑒 = ((𝑦 − 1)(,)(𝑦 + 1)) → (𝑦𝑒𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))))
9491, 92, 29, 93rspcef 39061 . . . . . . . . . . 11 ((((𝑦 − 1)(,)(𝑦 + 1)) ∈ 𝑇𝑦 ∈ ((𝑦 − 1)(,)(𝑦 + 1))) → ∃𝑒𝑇 𝑦𝑒)
9585, 90, 94syl2anc 692 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → ∃𝑒𝑇 𝑦𝑒)
9695, 30sylibr 224 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 𝑇)
9796ex 450 . . . . . . . 8 (𝜑 → (𝑦 ∈ ℝ → 𝑦 𝑇))
9851, 97impbid 202 . . . . . . 7 (𝜑 → (𝑦 𝑇𝑦 ∈ ℝ))
9926, 98alrimi 2080 . . . . . 6 (𝜑 → ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
100 dfcleq 2614 . . . . . 6 ( 𝑇 = ℝ ↔ ∀𝑦(𝑦 𝑇𝑦 ∈ ℝ))
10199, 100sylibr 224 . . . . 5 (𝜑 𝑇 = ℝ)
102101difeq1d 3719 . . . 4 (𝜑 → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
103102adantr 481 . . 3 ((𝜑𝑥𝑇) → ( 𝑇𝑥) = (ℝ ∖ 𝑥))
104 difss 3729 . . . . . . 7 (ℝ ∖ 𝑥) ⊆ ℝ
1052, 104ssexi 4794 . . . . . . . 8 (ℝ ∖ 𝑥) ∈ V
106 elpwg 4157 . . . . . . . 8 ((ℝ ∖ 𝑥) ∈ V → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ))
107105, 106ax-mp 5 . . . . . . 7 ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ↔ (ℝ ∖ 𝑥) ⊆ ℝ)
108104, 107mpbir 221 . . . . . 6 (ℝ ∖ 𝑥) ∈ 𝒫 ℝ
109108a1i 11 . . . . 5 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝒫 ℝ)
11057ffund 6036 . . . . . . . . 9 (𝜑 → Fun 𝐹)
111 difpreima 6329 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
112110, 111syl 17 . . . . . . . 8 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ((𝐹 “ ℝ) ∖ (𝐹𝑥)))
113 fimacnv 6333 . . . . . . . . . . 11 (𝐹:𝐷⟶ℝ → (𝐹 “ ℝ) = 𝐷)
11457, 113syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ ℝ) = 𝐷)
11510, 14restuni4 39124 . . . . . . . . . 10 (𝜑 (𝑆t 𝐷) = 𝐷)
116114, 115eqtr4d 2657 . . . . . . . . 9 (𝜑 → (𝐹 “ ℝ) = (𝑆t 𝐷))
117116difeq1d 3719 . . . . . . . 8 (𝜑 → ((𝐹 “ ℝ) ∖ (𝐹𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
118112, 117eqtrd 2654 . . . . . . 7 (𝜑 → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
119118adantr 481 . . . . . 6 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) = ( (𝑆t 𝐷) ∖ (𝐹𝑥)))
12017adantr 481 . . . . . . 7 ((𝜑𝑥𝑇) → (𝑆t 𝐷) ∈ SAlg)
121 imaeq2 5450 . . . . . . . . . . . 12 (𝑒 = 𝑥 → (𝐹𝑒) = (𝐹𝑥))
122121eleq1d 2684 . . . . . . . . . . 11 (𝑒 = 𝑥 → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹𝑥) ∈ (𝑆t 𝐷)))
123122, 1elrab2 3360 . . . . . . . . . 10 (𝑥𝑇 ↔ (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
124123biimpi 206 . . . . . . . . 9 (𝑥𝑇 → (𝑥 ∈ 𝒫 ℝ ∧ (𝐹𝑥) ∈ (𝑆t 𝐷)))
125124simprd 479 . . . . . . . 8 (𝑥𝑇 → (𝐹𝑥) ∈ (𝑆t 𝐷))
126125adantl 482 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ (𝑆t 𝐷))
127120, 126saldifcld 40328 . . . . . 6 ((𝜑𝑥𝑇) → ( (𝑆t 𝐷) ∖ (𝐹𝑥)) ∈ (𝑆t 𝐷))
128119, 127eqeltrd 2699 . . . . 5 ((𝜑𝑥𝑇) → (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷))
129109, 128jca 554 . . . 4 ((𝜑𝑥𝑇) → ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
130 imaeq2 5450 . . . . . 6 (𝑒 = (ℝ ∖ 𝑥) → (𝐹𝑒) = (𝐹 “ (ℝ ∖ 𝑥)))
131130eleq1d 2684 . . . . 5 (𝑒 = (ℝ ∖ 𝑥) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
132131, 1elrab2 3360 . . . 4 ((ℝ ∖ 𝑥) ∈ 𝑇 ↔ ((ℝ ∖ 𝑥) ∈ 𝒫 ℝ ∧ (𝐹 “ (ℝ ∖ 𝑥)) ∈ (𝑆t 𝐷)))
133129, 132sylibr 224 . . 3 ((𝜑𝑥𝑇) → (ℝ ∖ 𝑥) ∈ 𝑇)
134103, 133eqeltrd 2699 . 2 ((𝜑𝑥𝑇) → ( 𝑇𝑥) ∈ 𝑇)
135 nnex 11011 . . . . . . . 8 ℕ ∈ V
136 fvex 6188 . . . . . . . 8 (𝑔𝑛) ∈ V
137135, 136iunex 7132 . . . . . . 7 𝑛 ∈ ℕ (𝑔𝑛) ∈ V
138137a1i 11 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ V)
139 ffvelrn 6343 . . . . . . . 8 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ∈ 𝑇)
1401eleq2i 2691 . . . . . . . . . . 11 ((𝑔𝑛) ∈ 𝑇 ↔ (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
141140biimpi 206 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)})
142 elrabi 3353 . . . . . . . . . 10 ((𝑔𝑛) ∈ {𝑒 ∈ 𝒫 ℝ ∣ (𝐹𝑒) ∈ (𝑆t 𝐷)} → (𝑔𝑛) ∈ 𝒫 ℝ)
143141, 142syl 17 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ∈ 𝒫 ℝ)
144 elpwi 4159 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝒫 ℝ → (𝑔𝑛) ⊆ ℝ)
145143, 144syl 17 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝑔𝑛) ⊆ ℝ)
146139, 145syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝑔𝑛) ⊆ ℝ)
147146iunssd 39091 . . . . . 6 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ⊆ ℝ)
148138, 147elpwd 4158 . . . . 5 (𝑔:ℕ⟶𝑇 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
149148adantl 482 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ)
150 imaiun 6488 . . . . . 6 (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛))
151150a1i 11 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) = 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)))
15217adantr 481 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → (𝑆t 𝐷) ∈ SAlg)
153 nnct 12763 . . . . . . 7 ℕ ≼ ω
154153a1i 11 . . . . . 6 ((𝜑𝑔:ℕ⟶𝑇) → ℕ ≼ ω)
155 imaeq2 5450 . . . . . . . . . . . 12 (𝑒 = (𝑔𝑛) → (𝐹𝑒) = (𝐹 “ (𝑔𝑛)))
156155eleq1d 2684 . . . . . . . . . . 11 (𝑒 = (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
157156, 1elrab2 3360 . . . . . . . . . 10 ((𝑔𝑛) ∈ 𝑇 ↔ ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
158157biimpi 206 . . . . . . . . 9 ((𝑔𝑛) ∈ 𝑇 → ((𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
159158simprd 479 . . . . . . . 8 ((𝑔𝑛) ∈ 𝑇 → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
160139, 159syl 17 . . . . . . 7 ((𝑔:ℕ⟶𝑇𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
161160adantll 749 . . . . . 6 (((𝜑𝑔:ℕ⟶𝑇) ∧ 𝑛 ∈ ℕ) → (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
162152, 154, 161saliuncl 40305 . . . . 5 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝐹 “ (𝑔𝑛)) ∈ (𝑆t 𝐷))
163151, 162eqeltrd 2699 . . . 4 ((𝜑𝑔:ℕ⟶𝑇) → (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷))
164149, 163jca 554 . . 3 ((𝜑𝑔:ℕ⟶𝑇) → ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
165 imaeq2 5450 . . . . 5 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → (𝐹𝑒) = (𝐹 𝑛 ∈ ℕ (𝑔𝑛)))
166165eleq1d 2684 . . . 4 (𝑒 = 𝑛 ∈ ℕ (𝑔𝑛) → ((𝐹𝑒) ∈ (𝑆t 𝐷) ↔ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
167166, 1elrab2 3360 . . 3 ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇 ↔ ( 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝒫 ℝ ∧ (𝐹 𝑛 ∈ ℕ (𝑔𝑛)) ∈ (𝑆t 𝐷)))
168164, 167sylibr 224 . 2 ((𝜑𝑔:ℕ⟶𝑇) → 𝑛 ∈ ℕ (𝑔𝑛) ∈ 𝑇)
1695, 24, 25, 134, 168issalnnd 40326 1 (𝜑𝑇 ∈ SAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wcel 1988  wrex 2910  {crab 2913  Vcvv 3195  cdif 3564  wss 3567  c0 3907  𝒫 cpw 4149   cuni 4427   ciun 4511   class class class wbr 4644  cmpt 4720  ccnv 5103  dom cdm 5104  cima 5107  Fun wfun 5870   Fn wfn 5871  wf 5872  cfv 5876  (class class class)co 6635  ωcom 7050  cdom 7938  cr 9920  1c1 9922   + caddc 9924  *cxr 10058  cmin 10251  cn 11005  (,)cioo 12160  t crest 16062  SAlgcsalg 40291  SMblFncsmblfn 40672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cc 9242  ax-ac2 9270  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-inf 8334  df-card 8750  df-acn 8753  df-ac 8924  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673  df-q 11774  df-rp 11818  df-ioo 12164  df-ico 12166  df-fl 12576  df-rest 16064  df-salg 40292  df-smblfn 40673
This theorem is referenced by:  smfpimbor1lem1  40768  smfpimbor1lem2  40769
  Copyright terms: Public domain W3C validator