Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsssmf Structured version   Visualization version   GIF version

Theorem smfsssmf 41456
 Description: If a function is measurable w.r.t. to a sigma-algebra, then it is measurable w.r.t. to a larger sigma-algebra. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfsssmf.r (𝜑𝑅 ∈ SAlg)
smfsssmf.s (𝜑𝑆 ∈ SAlg)
smfsssmf.i (𝜑𝑅𝑆)
smfsssmf.f (𝜑𝐹 ∈ (SMblFn‘𝑅))
Assertion
Ref Expression
smfsssmf (𝜑𝐹 ∈ (SMblFn‘𝑆))

Proof of Theorem smfsssmf
Dummy variables 𝑎 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1990 . 2 𝑎𝜑
2 smfsssmf.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsssmf.r . . . 4 (𝜑𝑅 ∈ SAlg)
4 smfsssmf.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑅))
5 eqid 2758 . . . 4 dom 𝐹 = dom 𝐹
63, 4, 5smfdmss 41446 . . 3 (𝜑 → dom 𝐹 𝑅)
7 smfsssmf.i . . . 4 (𝜑𝑅𝑆)
87unissd 4612 . . 3 (𝜑 𝑅 𝑆)
96, 8sstrd 3752 . 2 (𝜑 → dom 𝐹 𝑆)
103, 4, 5smff 41445 . 2 (𝜑𝐹:dom 𝐹⟶ℝ)
11 ssrest 21180 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝑅𝑆) → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
122, 7, 11syl2anc 696 . . . 4 (𝜑 → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
1312adantr 472 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑅t dom 𝐹) ⊆ (𝑆t dom 𝐹))
143adantr 472 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑅 ∈ SAlg)
154adantr 472 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝐹 ∈ (SMblFn‘𝑅))
16 simpr 479 . . . 4 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
1714, 15, 5, 16smfpreimalt 41444 . . 3 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑅t dom 𝐹))
1813, 17sseldd 3743 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ dom 𝐹 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t dom 𝐹))
191, 2, 9, 10, 18issmfd 41448 1 (𝜑𝐹 ∈ (SMblFn‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 2137  {crab 3052   ⊆ wss 3713  ∪ cuni 4586   class class class wbr 4802  dom cdm 5264  ‘cfv 6047  (class class class)co 6811  ℝcr 10125   < clt 10264   ↾t crest 16281  SAlgcsalg 41029  SMblFncsmblfn 41413 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-pre-lttri 10200  ax-pre-lttrn 10201 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-op 4326  df-uni 4587  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-id 5172  df-po 5185  df-so 5186  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-1st 7331  df-2nd 7332  df-er 7909  df-pm 8024  df-en 8120  df-dom 8121  df-sdom 8122  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-ioo 12370  df-ico 12372  df-rest 16283  df-smblfn 41414 This theorem is referenced by:  bormflebmf  41466
 Copyright terms: Public domain W3C validator