Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem1 Structured version   Visualization version   GIF version

Theorem smfsuplem1 40786
 Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem1.m (𝜑𝑀 ∈ ℤ)
smfsuplem1.z 𝑍 = (ℤ𝑀)
smfsuplem1.s (𝜑𝑆 ∈ SAlg)
smfsuplem1.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem1.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem1.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem1.a (𝜑𝐴 ∈ ℝ)
smfsuplem1.h (𝜑𝐻:𝑍𝑆)
smfsuplem1.i ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
Assertion
Ref Expression
smfsuplem1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑥   𝐷,𝑛,𝑥,𝑦   𝑥,𝐹,𝑦   𝑛,𝐺,𝑥   𝑛,𝐻,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑛)   𝐺(𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem1
StepHypRef Expression
1 smfsuplem1.s . . . . . . . . . . . . 13 (𝜑𝑆 ∈ SAlg)
21adantr 481 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
3 smfsuplem1.f . . . . . . . . . . . . 13 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
43ffvelrnda 6357 . . . . . . . . . . . 12 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
5 eqid 2621 . . . . . . . . . . . 12 dom (𝐹𝑛) = dom (𝐹𝑛)
62, 4, 5smff 40710 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
76ffnd 6044 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝐹𝑛) Fn dom (𝐹𝑛))
87adantr 481 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐹𝑛) Fn dom (𝐹𝑛))
9 smfsuplem1.d . . . . . . . . . . . . 13 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
10 ssrab2 3685 . . . . . . . . . . . . 13 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
119, 10eqsstri 3633 . . . . . . . . . . . 12 𝐷 𝑛𝑍 dom (𝐹𝑛)
12 iinss2 4570 . . . . . . . . . . . 12 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
1311, 12syl5ss 3612 . . . . . . . . . . 11 (𝑛𝑍𝐷 ⊆ dom (𝐹𝑛))
1413ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐷 ⊆ dom (𝐹𝑛))
15 cnvimass 5483 . . . . . . . . . . . . 13 (𝐺 “ (-∞(,]𝐴)) ⊆ dom 𝐺
1615sseli 3597 . . . . . . . . . . . 12 (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) → 𝑥 ∈ dom 𝐺)
1716adantl 482 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
18 nfv 1842 . . . . . . . . . . . . . . 15 𝑛(𝜑𝑥𝐷)
19 smfsuplem1.m . . . . . . . . . . . . . . . . . . 19 (𝜑𝑀 ∈ ℤ)
20 uzid 11699 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
2119, 20syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ𝑀))
22 smfsuplem1.z . . . . . . . . . . . . . . . . . 18 𝑍 = (ℤ𝑀)
2321, 22syl6eleqr 2711 . . . . . . . . . . . . . . . . 17 (𝜑𝑀𝑍)
2423ne0d 39134 . . . . . . . . . . . . . . . 16 (𝜑𝑍 ≠ ∅)
2524adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
266adantlr 751 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2712adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2811sseli 3597 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
2928adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3027, 29sseldd 3602 . . . . . . . . . . . . . . . . 17 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3130adantll 750 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3226, 31ffvelrnd 6358 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
339rabeq2i 3195 . . . . . . . . . . . . . . . . 17 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3433simprbi 480 . . . . . . . . . . . . . . . 16 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3534adantl 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3618, 25, 32, 35suprclrnmpt 39288 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
37 smfsuplem1.g . . . . . . . . . . . . . 14 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3836, 37fmptd 6383 . . . . . . . . . . . . 13 (𝜑𝐺:𝐷⟶ℝ)
3938fdmd 39242 . . . . . . . . . . . 12 (𝜑 → dom 𝐺 = 𝐷)
4039ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → dom 𝐺 = 𝐷)
4117, 40eleqtrd 2702 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥𝐷)
4214, 41sseldd 3602 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom (𝐹𝑛))
43 mnfxr 10093 . . . . . . . . . . 11 -∞ ∈ ℝ*
4443a1i 11 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
45 smfsuplem1.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ)
4645rexrd 10086 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
4746ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
4832an32s 846 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
4941, 48syldan 487 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
5049rexrd 10086 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
5149mnfltd 11955 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ < ((𝐹𝑛)‘𝑥))
5216adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ dom 𝐺)
5338ffdmd 6061 . . . . . . . . . . . . . 14 (𝜑𝐺:dom 𝐺⟶ℝ)
5453ffvelrnda 6357 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ dom 𝐺) → (𝐺𝑥) ∈ ℝ)
5552, 54syldan 487 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5655adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ ℝ)
5745ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ)
58 an32 839 . . . . . . . . . . . . . . 15 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) ↔ ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
5958biimpi 206 . . . . . . . . . . . . . 14 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝜑𝑥𝐷) ∧ 𝑛𝑍))
6018, 32, 35suprubrnmpt 39290 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6159, 60syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6237a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )))
6362, 36fvmpt2d 6291 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6463adantlr 751 . . . . . . . . . . . . 13 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
6561, 64breqtrrd 4679 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑥𝐷) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6641, 65syldan 487 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ (𝐺𝑥))
6743a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
6846adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
69 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
7038ffnd 6044 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 Fn 𝐷)
71 elpreima 6335 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐷 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7372adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥 ∈ (𝐺 “ (-∞(,]𝐴)) ↔ (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴))))
7469, 73mpbid 222 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝑥𝐷 ∧ (𝐺𝑥) ∈ (-∞(,]𝐴)))
7574simprd 479 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ∈ (-∞(,]𝐴))
7667, 68, 75iocleubd 39595 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7776adantlr 751 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → (𝐺𝑥) ≤ 𝐴)
7849, 56, 57, 66, 77letrd 10191 . . . . . . . . . 10 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
7944, 47, 50, 51, 78eliocd 39539 . . . . . . . . 9 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
808, 42, 79elpreimad 39276 . . . . . . . 8 (((𝜑𝑛𝑍) ∧ 𝑥 ∈ (𝐺 “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
8180ssd 39078 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ ((𝐹𝑛) “ (-∞(,]𝐴)))
82 smfsuplem1.i . . . . . . . 8 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
83 inss1 3831 . . . . . . . 8 ((𝐻𝑛) ∩ dom (𝐹𝑛)) ⊆ (𝐻𝑛)
8482, 83syl6eqss 3653 . . . . . . 7 ((𝜑𝑛𝑍) → ((𝐹𝑛) “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8581, 84sstrd 3611 . . . . . 6 ((𝜑𝑛𝑍) → (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8685ralrimiva 2965 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
87 ssiin 4568 . . . . 5 ((𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛) ↔ ∀𝑛𝑍 (𝐺 “ (-∞(,]𝐴)) ⊆ (𝐻𝑛))
8886, 87sylibr 224 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝑛𝑍 (𝐻𝑛))
8915, 39syl5sseq 3651 . . . 4 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ 𝐷)
9088, 89ssind 3835 . . 3 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ⊆ ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
91 iniin1 39135 . . . . 5 (𝑍 ≠ ∅ → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9224, 91syl 17 . . . 4 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9370adantr 481 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐺 Fn 𝐷)
94 simpr 477 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
9523adantr 481 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑀𝑍)
96 fveq2 6189 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝐻𝑛) = (𝐻𝑀))
9796ineq1d 3811 . . . . . . . . 9 (𝑛 = 𝑀 → ((𝐻𝑛) ∩ 𝐷) = ((𝐻𝑀) ∩ 𝐷))
9897eleq2d 2686 . . . . . . . 8 (𝑛 = 𝑀 → (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) ↔ 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)))
9994, 95, 98eliind 39066 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑀) ∩ 𝐷))
100 elinel2 3798 . . . . . . 7 (𝑥 ∈ ((𝐻𝑀) ∩ 𝐷) → 𝑥𝐷)
10199, 100syl 17 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
10243a1i 11 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ ∈ ℝ*)
10346adantr 481 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ*)
10463, 36eqeltrd 2700 . . . . . . . . 9 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ)
105104rexrd 10086 . . . . . . . 8 ((𝜑𝑥𝐷) → (𝐺𝑥) ∈ ℝ*)
106101, 105syldan 487 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ*)
107100adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → 𝑥𝐷)
108107, 104syldan 487 . . . . . . . . 9 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → (𝐺𝑥) ∈ ℝ)
109108mnfltd 11955 . . . . . . . 8 ((𝜑𝑥 ∈ ((𝐻𝑀) ∩ 𝐷)) → -∞ < (𝐺𝑥))
11099, 109syldan 487 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → -∞ < (𝐺𝑥))
111101, 63syldan 487 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) = sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
112 nfv 1842 . . . . . . . . . . 11 𝑛𝜑
113 nfcv 2763 . . . . . . . . . . . 12 𝑛𝑥
114 nfii1 4549 . . . . . . . . . . . 12 𝑛 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
115113, 114nfel 2776 . . . . . . . . . . 11 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)
116112, 115nfan 1827 . . . . . . . . . 10 𝑛(𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷))
117 simpll 790 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝜑)
118 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑛𝑍)
119 eliinid 39120 . . . . . . . . . . . . 13 ((𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
120119adantll 750 . . . . . . . . . . . 12 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛) ∩ 𝐷))
121 elinel1 3797 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥 ∈ (𝐻𝑛))
1221213ad2ant3 1083 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐻𝑛))
123 elinel2 3798 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((𝐻𝑛) ∩ 𝐷) → 𝑥𝐷)
124123adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥𝐷)
12530ancoms 469 . . . . . . . . . . . . . . . . 17 ((𝑛𝑍𝑥𝐷) → 𝑥 ∈ dom (𝐹𝑛))
126124, 125syldan 487 . . . . . . . . . . . . . . . 16 ((𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
1271263adant1 1078 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ dom (𝐹𝑛))
128122, 127elind 3796 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐻𝑛) ∩ dom (𝐹𝑛)))
129823adant3 1080 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐻𝑛) ∩ dom (𝐹𝑛)))
130128, 129eleqtrrd 2703 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
13143a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → -∞ ∈ ℝ*)
132463ad2ant1 1081 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝐴 ∈ ℝ*)
133 simp3 1062 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → 𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)))
134 elpreima 6335 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑛) Fn dom (𝐹𝑛) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1357, 134syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛𝑍) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
1361353adant3 1080 . . . . . . . . . . . . . . . 16 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴)) ↔ (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))))
137133, 136mpbid 222 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → (𝑥 ∈ dom (𝐹𝑛) ∧ ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴)))
138137simprd 479 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ∈ (-∞(,]𝐴))
139131, 132, 138iocleubd 39595 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ ((𝐹𝑛) “ (-∞(,]𝐴))) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
140130, 139syld3an3 1370 . . . . . . . . . . . 12 ((𝜑𝑛𝑍𝑥 ∈ ((𝐻𝑛) ∩ 𝐷)) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
141117, 118, 120, 140syl3anc 1325 . . . . . . . . . . 11 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝐴)
142141ex 450 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝑛𝑍 → ((𝐹𝑛)‘𝑥) ≤ 𝐴))
143116, 142ralrimi 2956 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴)
14424adantr 481 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑍 ≠ ∅)
145101, 32syldanl 735 . . . . . . . . . 10 (((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
146101, 34syl 17 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
14745adantr 481 . . . . . . . . . 10 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝐴 ∈ ℝ)
148116, 144, 145, 146, 147suprleubrnmpt 39468 . . . . . . . . 9 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝐴))
149143, 148mpbird 247 . . . . . . . 8 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ≤ 𝐴)
150111, 149eqbrtrd 4673 . . . . . . 7 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ≤ 𝐴)
151102, 103, 106, 110, 150eliocd 39539 . . . . . 6 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → (𝐺𝑥) ∈ (-∞(,]𝐴))
15293, 101, 151elpreimad 39276 . . . . 5 ((𝜑𝑥 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷)) → 𝑥 ∈ (𝐺 “ (-∞(,]𝐴)))
153152ssd 39078 . . . 4 (𝜑 𝑛𝑍 ((𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15492, 153eqsstrd 3637 . . 3 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ⊆ (𝐺 “ (-∞(,]𝐴)))
15590, 154eqssd 3618 . 2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷))
156 eqid 2621 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
157 fvex 6199 . . . . . . . . 9 (𝐹𝑛) ∈ V
158157dmex 7096 . . . . . . . 8 dom (𝐹𝑛) ∈ V
159158rgenw 2923 . . . . . . 7 𝑛𝑍 dom (𝐹𝑛) ∈ V
160159a1i 11 . . . . . 6 (𝜑 → ∀𝑛𝑍 dom (𝐹𝑛) ∈ V)
16124, 160iinexd 39144 . . . . 5 (𝜑 𝑛𝑍 dom (𝐹𝑛) ∈ V)
162156, 161rabexd 4812 . . . 4 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ∈ V)
1639, 162syl5eqel 2704 . . 3 (𝜑𝐷 ∈ V)
16422uzct 39058 . . . . 5 𝑍 ≼ ω
165164a1i 11 . . . 4 (𝜑𝑍 ≼ ω)
166 smfsuplem1.h . . . . 5 (𝜑𝐻:𝑍𝑆)
167166ffvelrnda 6357 . . . 4 ((𝜑𝑛𝑍) → (𝐻𝑛) ∈ 𝑆)
1681, 165, 24, 167saliincl 40314 . . 3 (𝜑 𝑛𝑍 (𝐻𝑛) ∈ 𝑆)
169 eqid 2621 . . 3 ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) = ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷)
1701, 163, 168, 169elrestd 39117 . 2 (𝜑 → ( 𝑛𝑍 (𝐻𝑛) ∩ 𝐷) ∈ (𝑆t 𝐷))
171155, 170eqeltrd 2700 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989   ≠ wne 2793  ∀wral 2911  ∃wrex 2912  {crab 2915  Vcvv 3198   ∩ cin 3571   ⊆ wss 3572  ∅c0 3913  ∩ ciin 4519   class class class wbr 4651   ↦ cmpt 4727  ◡ccnv 5111  dom cdm 5112  ran crn 5113   “ cima 5115   Fn wfn 5881  ⟶wf 5882  ‘cfv 5886  (class class class)co 6647  ωcom 7062   ≼ cdom 7950  supcsup 8343  ℝcr 9932  -∞cmnf 10069  ℝ*cxr 10070   < clt 10071   ≤ cle 10072  ℤcz 11374  ℤ≥cuz 11684  (,]cioc 12173   ↾t crest 16075  SAlgcsalg 40297  SMblFncsmblfn 40678 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-iin 4521  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-omul 7562  df-er 7739  df-map 7856  df-pm 7857  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-oi 8412  df-card 8762  df-acn 8765  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-n0 11290  df-z 11375  df-uz 11685  df-ioo 12176  df-ioc 12177  df-ico 12178  df-rest 16077  df-salg 40298  df-smblfn 40679 This theorem is referenced by:  smfsuplem2  40787
 Copyright terms: Public domain W3C validator