Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem3 Structured version   Visualization version   GIF version

Theorem smfsuplem3 42964
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem3.m (𝜑𝑀 ∈ ℤ)
smfsuplem3.z 𝑍 = (ℤ𝑀)
smfsuplem3.s (𝜑𝑆 ∈ SAlg)
smfsuplem3.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem3.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem3.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
Assertion
Ref Expression
smfsuplem3 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝐷,𝑛,𝑥,𝑦   𝑛,𝐹,𝑥,𝑦   𝑛,𝑀   𝑆,𝑛,𝑦   𝑛,𝑍,𝑥,𝑦   𝜑,𝑛,𝑦,𝑥
Allowed substitution hints:   𝑆(𝑥)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦)

Proof of Theorem smfsuplem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nfv 1906 . 2 𝑎𝜑
2 smfsuplem3.s . 2 (𝜑𝑆 ∈ SAlg)
3 smfsuplem3.d . . . . 5 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
4 ssrab2 4053 . . . . 5 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑛𝑍 dom (𝐹𝑛)
53, 4eqsstri 3998 . . . 4 𝐷 𝑛𝑍 dom (𝐹𝑛)
65a1i 11 . . 3 (𝜑𝐷 𝑛𝑍 dom (𝐹𝑛))
7 smfsuplem3.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 uzid 12246 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
97, 8syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
10 smfsuplem3.z . . . . 5 𝑍 = (ℤ𝑀)
119, 10eleqtrrdi 2921 . . . 4 (𝜑𝑀𝑍)
12 fveq2 6663 . . . . 5 (𝑛 = 𝑀 → (𝐹𝑛) = (𝐹𝑀))
1312dmeqd 5767 . . . 4 (𝑛 = 𝑀 → dom (𝐹𝑛) = dom (𝐹𝑀))
14 smfsuplem3.f . . . . . 6 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
1514, 11ffvelrnd 6844 . . . . 5 (𝜑 → (𝐹𝑀) ∈ (SMblFn‘𝑆))
16 eqid 2818 . . . . 5 dom (𝐹𝑀) = dom (𝐹𝑀)
172, 15, 16smfdmss 42887 . . . 4 (𝜑 → dom (𝐹𝑀) ⊆ 𝑆)
1811, 13, 17iinssd 41273 . . 3 (𝜑 𝑛𝑍 dom (𝐹𝑛) ⊆ 𝑆)
196, 18sstrd 3974 . 2 (𝜑𝐷 𝑆)
20 nfv 1906 . . . 4 𝑛(𝜑𝑥𝐷)
2111ne0d 4298 . . . . 5 (𝜑𝑍 ≠ ∅)
2221adantr 481 . . . 4 ((𝜑𝑥𝐷) → 𝑍 ≠ ∅)
232adantr 481 . . . . . . 7 ((𝜑𝑛𝑍) → 𝑆 ∈ SAlg)
2414ffvelrnda 6843 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ (SMblFn‘𝑆))
25 eqid 2818 . . . . . . 7 dom (𝐹𝑛) = dom (𝐹𝑛)
2623, 24, 25smff 42886 . . . . . 6 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
2726adantlr 711 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ)
28 iinss2 4972 . . . . . . . 8 (𝑛𝑍 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
2928adantl 482 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑛𝑍 dom (𝐹𝑛) ⊆ dom (𝐹𝑛))
305sseli 3960 . . . . . . . 8 (𝑥𝐷𝑥 𝑛𝑍 dom (𝐹𝑛))
3130adantr 481 . . . . . . 7 ((𝑥𝐷𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
3229, 31sseldd 3965 . . . . . 6 ((𝑥𝐷𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3332adantll 710 . . . . 5 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
3427, 33ffvelrnd 6844 . . . 4 (((𝜑𝑥𝐷) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ)
353rabeq2i 3485 . . . . . 6 (𝑥𝐷 ↔ (𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦))
3635simprbi 497 . . . . 5 (𝑥𝐷 → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3736adantl 482 . . . 4 ((𝜑𝑥𝐷) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
3820, 22, 34, 37suprclrnmpt 41399 . . 3 ((𝜑𝑥𝐷) → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) ∈ ℝ)
39 smfsuplem3.g . . 3 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
4038, 39fmptd 6870 . 2 (𝜑𝐺:𝐷⟶ℝ)
417adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑀 ∈ ℤ)
422adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
4314adantr 481 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐹:𝑍⟶(SMblFn‘𝑆))
44 simpr 485 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
4541, 10, 42, 43, 3, 39, 44smfsuplem2 42963 . 2 ((𝜑𝑎 ∈ ℝ) → (𝐺 “ (-∞(,]𝑎)) ∈ (𝑆t 𝐷))
461, 2, 19, 40, 45issmfle2d 42960 1 (𝜑𝐺 ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  wrex 3136  {crab 3139  wss 3933  c0 4288   cuni 4830   ciin 4911   class class class wbr 5057  cmpt 5137  dom cdm 5548  ran crn 5549  wf 6344  cfv 6348  supcsup 8892  cr 10524   < clt 10663  cle 10664  cz 11969  cuz 12231  SAlgcsalg 42470  SMblFncsmblfn 42854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-13 2381  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cc 9845  ax-ac2 9873  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-omul 8096  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-acn 9359  df-ac 9530  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ioo 12730  df-ioc 12731  df-ico 12732  df-fl 13150  df-rest 16684  df-topgen 16705  df-top 21430  df-bases 21482  df-salg 42471  df-salgen 42475  df-smblfn 42855
This theorem is referenced by:  smfsup  42965
  Copyright terms: Public domain W3C validator