![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smgrpmgm | Structured version Visualization version GIF version |
Description: A semi-group is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
Ref | Expression |
---|---|
smgrpmgm.1 | ⊢ 𝑋 = dom dom 𝐺 |
Ref | Expression |
---|---|
smgrpmgm | ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smgrpmgm.1 | . . . 4 ⊢ 𝑋 = dom dom 𝐺 | |
2 | 1 | issmgrpOLD 33967 | . . 3 ⊢ (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) |
3 | simpl 474 | . . 3 ⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) → 𝐺:(𝑋 × 𝑋)⟶𝑋) | |
4 | 2, 3 | syl6bi 243 | . 2 ⊢ (𝐺 ∈ SemiGrp → (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋)) |
5 | 4 | pm2.43i 52 | 1 ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ∀wral 3042 × cxp 5256 dom cdm 5258 ⟶wf 6037 (class class class)co 6805 SemiGrpcsem 33964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pr 5047 ax-un 7106 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-ral 3047 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-nul 4051 df-if 4223 df-sn 4314 df-pr 4316 df-op 4320 df-uni 4581 df-br 4797 df-opab 4857 df-id 5166 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-fv 6049 df-ov 6808 df-ass 33947 df-mgmOLD 33953 df-sgrOLD 33965 |
This theorem is referenced by: ismndo1 33977 |
Copyright terms: Public domain | W3C validator |