MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smoeq Structured version   Visualization version   GIF version

Theorem smoeq 7976
Description: Equality theorem for strictly monotone functions. (Contributed by Andrew Salmon, 16-Nov-2011.)
Assertion
Ref Expression
smoeq (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))

Proof of Theorem smoeq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
2 dmeq 5765 . . . 4 (𝐴 = 𝐵 → dom 𝐴 = dom 𝐵)
31, 2feq12d 6495 . . 3 (𝐴 = 𝐵 → (𝐴:dom 𝐴⟶On ↔ 𝐵:dom 𝐵⟶On))
4 ordeq 6191 . . . 4 (dom 𝐴 = dom 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
52, 4syl 17 . . 3 (𝐴 = 𝐵 → (Ord dom 𝐴 ↔ Ord dom 𝐵))
6 fveq1 6662 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑥) = (𝐵𝑥))
7 fveq1 6662 . . . . . . 7 (𝐴 = 𝐵 → (𝐴𝑦) = (𝐵𝑦))
86, 7eleq12d 2904 . . . . . 6 (𝐴 = 𝐵 → ((𝐴𝑥) ∈ (𝐴𝑦) ↔ (𝐵𝑥) ∈ (𝐵𝑦)))
98imbi2d 342 . . . . 5 (𝐴 = 𝐵 → ((𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ (𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1092ralbidv 3196 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
112raleqdv 3413 . . . . 5 (𝐴 = 𝐵 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1211ralbidv 3194 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
132raleqdv 3413 . . . 4 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1410, 12, 133bitrd 306 . . 3 (𝐴 = 𝐵 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) ↔ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
153, 5, 143anbi123d 1427 . 2 (𝐴 = 𝐵 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦)))))
16 df-smo 7972 . 2 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
17 df-smo 7972 . 2 (Smo 𝐵 ↔ (𝐵:dom 𝐵⟶On ∧ Ord dom 𝐵 ∧ ∀𝑥 ∈ dom 𝐵𝑦 ∈ dom 𝐵(𝑥𝑦 → (𝐵𝑥) ∈ (𝐵𝑦))))
1815, 16, 173bitr4g 315 1 (𝐴 = 𝐵 → (Smo 𝐴 ↔ Smo 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1079   = wceq 1528  wcel 2105  wral 3135  dom cdm 5548  Ord word 6183  Oncon0 6184  wf 6344  cfv 6348  Smo wsmo 7971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-tr 5164  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-ord 6187  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-smo 7972
This theorem is referenced by:  smores3  7979  smo0  7984  cofsmo  9679  cfsmolem  9680  alephsing  9686
  Copyright terms: Public domain W3C validator