Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smofvon2 Structured version   Visualization version   GIF version

Theorem smofvon2 7498
 Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.)
Assertion
Ref Expression
smofvon2 (Smo 𝐹 → (𝐹𝐵) ∈ On)

Proof of Theorem smofvon2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfsmo2 7489 . . . 4 (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹𝑦𝑥 (𝐹𝑦) ∈ (𝐹𝑥)))
21simp1bi 1096 . . 3 (Smo 𝐹𝐹:dom 𝐹⟶On)
3 ffvelrn 6397 . . . 4 ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹𝐵) ∈ On)
43expcom 450 . . 3 (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹𝐵) ∈ On))
52, 4syl5 34 . 2 (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
6 ndmfv 6256 . . . 4 𝐵 ∈ dom 𝐹 → (𝐹𝐵) = ∅)
7 0elon 5816 . . . 4 ∅ ∈ On
86, 7syl6eqel 2738 . . 3 𝐵 ∈ dom 𝐹 → (𝐹𝐵) ∈ On)
98a1d 25 . 2 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹𝐵) ∈ On))
105, 9pm2.61i 176 1 (Smo 𝐹 → (𝐹𝐵) ∈ On)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∈ wcel 2030  ∀wral 2941  ∅c0 3948  dom cdm 5143  Ord word 5760  Oncon0 5761  ⟶wf 5922  ‘cfv 5926  Smo wsmo 7487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-id 5053  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-ord 5764  df-on 5765  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-smo 7488 This theorem is referenced by:  smo11  7506  smoord  7507  smoword  7508  smogt  7509
 Copyright terms: Public domain W3C validator