![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smofvon2 | Structured version Visualization version GIF version |
Description: The function values of a strictly monotone ordinal function are ordinals. (Contributed by Mario Carneiro, 12-Mar-2013.) |
Ref | Expression |
---|---|
smofvon2 | ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsmo2 7489 | . . . 4 ⊢ (Smo 𝐹 ↔ (𝐹:dom 𝐹⟶On ∧ Ord dom 𝐹 ∧ ∀𝑥 ∈ dom 𝐹∀𝑦 ∈ 𝑥 (𝐹‘𝑦) ∈ (𝐹‘𝑥))) | |
2 | 1 | simp1bi 1096 | . . 3 ⊢ (Smo 𝐹 → 𝐹:dom 𝐹⟶On) |
3 | ffvelrn 6397 | . . . 4 ⊢ ((𝐹:dom 𝐹⟶On ∧ 𝐵 ∈ dom 𝐹) → (𝐹‘𝐵) ∈ On) | |
4 | 3 | expcom 450 | . . 3 ⊢ (𝐵 ∈ dom 𝐹 → (𝐹:dom 𝐹⟶On → (𝐹‘𝐵) ∈ On)) |
5 | 2, 4 | syl5 34 | . 2 ⊢ (𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
6 | ndmfv 6256 | . . . 4 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) = ∅) | |
7 | 0elon 5816 | . . . 4 ⊢ ∅ ∈ On | |
8 | 6, 7 | syl6eqel 2738 | . . 3 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (𝐹‘𝐵) ∈ On) |
9 | 8 | a1d 25 | . 2 ⊢ (¬ 𝐵 ∈ dom 𝐹 → (Smo 𝐹 → (𝐹‘𝐵) ∈ On)) |
10 | 5, 9 | pm2.61i 176 | 1 ⊢ (Smo 𝐹 → (𝐹‘𝐵) ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2030 ∀wral 2941 ∅c0 3948 dom cdm 5143 Ord word 5760 Oncon0 5761 ⟶wf 5922 ‘cfv 5926 Smo wsmo 7487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-tr 4786 df-id 5053 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-ord 5764 df-on 5765 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-smo 7488 |
This theorem is referenced by: smo11 7506 smoord 7507 smoword 7508 smogt 7509 |
Copyright terms: Public domain | W3C validator |