MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smogt Structured version   Visualization version   GIF version

Theorem smogt 8003
Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in [TakeutiZaring] p. 50. (Contributed by Andrew Salmon, 23-Nov-2011.) (Revised by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
smogt ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))

Proof of Theorem smogt
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑥 = 𝐶𝑥 = 𝐶)
2 fveq2 6669 . . . . . 6 (𝑥 = 𝐶 → (𝐹𝑥) = (𝐹𝐶))
31, 2sseq12d 3999 . . . . 5 (𝑥 = 𝐶 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝐶 ⊆ (𝐹𝐶)))
43imbi2d 343 . . . 4 (𝑥 = 𝐶 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹𝐶))))
5 smodm2 7991 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → Ord 𝐴)
653adant3 1128 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → Ord 𝐴)
7 simp3 1134 . . . . . . . . 9 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥𝐴)
8 ordelord 6212 . . . . . . . . 9 ((Ord 𝐴𝑥𝐴) → Ord 𝑥)
96, 7, 8syl2anc 586 . . . . . . . 8 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → Ord 𝑥)
10 vex 3497 . . . . . . . . 9 𝑥 ∈ V
1110elon 6199 . . . . . . . 8 (𝑥 ∈ On ↔ Ord 𝑥)
129, 11sylibr 236 . . . . . . 7 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ∈ On)
13 eleq1w 2895 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
14133anbi3d 1438 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ↔ (𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴)))
15 id 22 . . . . . . . . . 10 (𝑥 = 𝑦𝑥 = 𝑦)
16 fveq2 6669 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
1715, 16sseq12d 3999 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ⊆ (𝐹𝑥) ↔ 𝑦 ⊆ (𝐹𝑦)))
1814, 17imbi12d 347 . . . . . . . 8 (𝑥 = 𝑦 → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)) ↔ ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦))))
19 simpl1 1187 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → 𝐹 Fn 𝐴)
20 simpl2 1188 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → Smo 𝐹)
21 ordtr1 6233 . . . . . . . . . . . . . . 15 (Ord 𝐴 → ((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2221expcomd 419 . . . . . . . . . . . . . 14 (Ord 𝐴 → (𝑥𝐴 → (𝑦𝑥𝑦𝐴)))
236, 7, 22sylc 65 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (𝑦𝑥𝑦𝐴))
2423imp 409 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → 𝑦𝐴)
25 pm2.27 42 . . . . . . . . . . . 12 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → 𝑦 ⊆ (𝐹𝑦)))
2619, 20, 24, 25syl3anc 1367 . . . . . . . . . . 11 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → 𝑦 ⊆ (𝐹𝑦)))
2726ralimdva 3177 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦)))
2853adant3 1128 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝐴)
29 simp31 1205 . . . . . . . . . . . . . . . . . . 19 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑥𝐴)
3028, 29, 8syl2anc 586 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝑥)
31 simp32 1206 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦𝑥)
32 ordelord 6212 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑥𝑦𝑥) → Ord 𝑦)
3330, 31, 32syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord 𝑦)
34 smofvon2 7992 . . . . . . . . . . . . . . . . . . 19 (Smo 𝐹 → (𝐹𝑥) ∈ On)
35343ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑥) ∈ On)
36 eloni 6200 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥) ∈ On → Ord (𝐹𝑥))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → Ord (𝐹𝑥))
38 simp33 1207 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦 ⊆ (𝐹𝑦))
39 smoel2 7999 . . . . . . . . . . . . . . . . . . 19 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝑥)) → (𝐹𝑦) ∈ (𝐹𝑥))
40393adantr3 1167 . . . . . . . . . . . . . . . . . 18 (((𝐹 Fn 𝐴 ∧ Smo 𝐹) ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑦) ∈ (𝐹𝑥))
41403impa 1106 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → (𝐹𝑦) ∈ (𝐹𝑥))
42 ordtr2 6234 . . . . . . . . . . . . . . . . . 18 ((Ord 𝑦 ∧ Ord (𝐹𝑥)) → ((𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ (𝐹𝑥)) → 𝑦 ∈ (𝐹𝑥)))
4342imp 409 . . . . . . . . . . . . . . . . 17 (((Ord 𝑦 ∧ Ord (𝐹𝑥)) ∧ (𝑦 ⊆ (𝐹𝑦) ∧ (𝐹𝑦) ∈ (𝐹𝑥))) → 𝑦 ∈ (𝐹𝑥))
4433, 37, 38, 41, 43syl22anc 836 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐴 ∧ Smo 𝐹 ∧ (𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦))) → 𝑦 ∈ (𝐹𝑥))
45443expia 1117 . . . . . . . . . . . . . . 15 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → ((𝑥𝐴𝑦𝑥𝑦 ⊆ (𝐹𝑦)) → 𝑦 ∈ (𝐹𝑥)))
46453expd 1349 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥𝐴 → (𝑦𝑥 → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥)))))
47463impia 1113 . . . . . . . . . . . . 13 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (𝑦𝑥 → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥))))
4847imp 409 . . . . . . . . . . . 12 (((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) ∧ 𝑦𝑥) → (𝑦 ⊆ (𝐹𝑦) → 𝑦 ∈ (𝐹𝑥)))
4948ralimdva 3177 . . . . . . . . . . 11 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦) → ∀𝑦𝑥 𝑦 ∈ (𝐹𝑥)))
50 dfss3 3955 . . . . . . . . . . 11 (𝑥 ⊆ (𝐹𝑥) ↔ ∀𝑦𝑥 𝑦 ∈ (𝐹𝑥))
5149, 50syl6ibr 254 . . . . . . . . . 10 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → (∀𝑦𝑥 𝑦 ⊆ (𝐹𝑦) → 𝑥 ⊆ (𝐹𝑥)))
5227, 51syldc 48 . . . . . . . . 9 (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)))
5352a1i 11 . . . . . . . 8 (𝑥 ∈ On → (∀𝑦𝑥 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑦𝐴) → 𝑦 ⊆ (𝐹𝑦)) → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))))
5418, 53tfis2 7570 . . . . . . 7 (𝑥 ∈ On → ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥)))
5512, 54mpcom 38 . . . . . 6 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝑥𝐴) → 𝑥 ⊆ (𝐹𝑥))
56553expia 1117 . . . . 5 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝑥𝐴𝑥 ⊆ (𝐹𝑥)))
5756com12 32 . . . 4 (𝑥𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝑥 ⊆ (𝐹𝑥)))
584, 57vtoclga 3573 . . 3 (𝐶𝐴 → ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → 𝐶 ⊆ (𝐹𝐶)))
5958com12 32 . 2 ((𝐹 Fn 𝐴 ∧ Smo 𝐹) → (𝐶𝐴𝐶 ⊆ (𝐹𝐶)))
60593impia 1113 1 ((𝐹 Fn 𝐴 ∧ Smo 𝐹𝐶𝐴) → 𝐶 ⊆ (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wss 3935  Ord word 6189  Oncon0 6190   Fn wfn 6349  cfv 6354  Smo wsmo 7981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-ord 6193  df-on 6194  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-fv 6362  df-smo 7982
This theorem is referenced by:  smorndom  8004  oismo  9003
  Copyright terms: Public domain W3C validator