MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores Structured version   Visualization version   GIF version

Theorem smores 7494
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 16-Nov-2011.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
Assertion
Ref Expression
smores ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))

Proof of Theorem smores
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funres 5967 . . . . . . . 8 (Fun 𝐴 → Fun (𝐴𝐵))
2 funfn 5956 . . . . . . . 8 (Fun 𝐴𝐴 Fn dom 𝐴)
3 funfn 5956 . . . . . . . 8 (Fun (𝐴𝐵) ↔ (𝐴𝐵) Fn dom (𝐴𝐵))
41, 2, 33imtr3i 280 . . . . . . 7 (𝐴 Fn dom 𝐴 → (𝐴𝐵) Fn dom (𝐴𝐵))
5 resss 5457 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐴
6 rnss 5386 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → ran (𝐴𝐵) ⊆ ran 𝐴)
75, 6ax-mp 5 . . . . . . . 8 ran (𝐴𝐵) ⊆ ran 𝐴
8 sstr 3644 . . . . . . . 8 ((ran (𝐴𝐵) ⊆ ran 𝐴 ∧ ran 𝐴 ⊆ On) → ran (𝐴𝐵) ⊆ On)
97, 8mpan 706 . . . . . . 7 (ran 𝐴 ⊆ On → ran (𝐴𝐵) ⊆ On)
104, 9anim12i 589 . . . . . 6 ((𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On) → ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
11 df-f 5930 . . . . . 6 (𝐴:dom 𝐴⟶On ↔ (𝐴 Fn dom 𝐴 ∧ ran 𝐴 ⊆ On))
12 df-f 5930 . . . . . 6 ((𝐴𝐵):dom (𝐴𝐵)⟶On ↔ ((𝐴𝐵) Fn dom (𝐴𝐵) ∧ ran (𝐴𝐵) ⊆ On))
1310, 11, 123imtr4i 281 . . . . 5 (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On)
1413a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (𝐴:dom 𝐴⟶On → (𝐴𝐵):dom (𝐴𝐵)⟶On))
15 ordelord 5783 . . . . . . 7 ((Ord dom 𝐴𝐵 ∈ dom 𝐴) → Ord 𝐵)
1615expcom 450 . . . . . 6 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord 𝐵))
17 ordin 5791 . . . . . . 7 ((Ord 𝐵 ∧ Ord dom 𝐴) → Ord (𝐵 ∩ dom 𝐴))
1817ex 449 . . . . . 6 (Ord 𝐵 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
1916, 18syli 39 . . . . 5 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord (𝐵 ∩ dom 𝐴)))
20 dmres 5454 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
21 ordeq 5768 . . . . . 6 (dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴) → (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴)))
2220, 21ax-mp 5 . . . . 5 (Ord dom (𝐴𝐵) ↔ Ord (𝐵 ∩ dom 𝐴))
2319, 22syl6ibr 242 . . . 4 (𝐵 ∈ dom 𝐴 → (Ord dom 𝐴 → Ord dom (𝐴𝐵)))
24 dmss 5355 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → dom (𝐴𝐵) ⊆ dom 𝐴)
255, 24ax-mp 5 . . . . . . . 8 dom (𝐴𝐵) ⊆ dom 𝐴
26 ssralv 3699 . . . . . . . 8 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2725, 26ax-mp 5 . . . . . . 7 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
28 ssralv 3699 . . . . . . . . 9 (dom (𝐴𝐵) ⊆ dom 𝐴 → (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
2925, 28ax-mp 5 . . . . . . . 8 (∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
3029ralimi 2981 . . . . . . 7 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
3127, 30syl 17 . . . . . 6 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
32 inss1 3866 . . . . . . . . . . . . 13 (𝐵 ∩ dom 𝐴) ⊆ 𝐵
3320, 32eqsstri 3668 . . . . . . . . . . . 12 dom (𝐴𝐵) ⊆ 𝐵
34 simpl 472 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥 ∈ dom (𝐴𝐵))
3533, 34sseldi 3634 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑥𝐵)
36 fvres 6245 . . . . . . . . . . 11 (𝑥𝐵 → ((𝐴𝐵)‘𝑥) = (𝐴𝑥))
3735, 36syl 17 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑥) = (𝐴𝑥))
38 simpr 476 . . . . . . . . . . . 12 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦 ∈ dom (𝐴𝐵))
3933, 38sseldi 3634 . . . . . . . . . . 11 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → 𝑦𝐵)
40 fvres 6245 . . . . . . . . . . 11 (𝑦𝐵 → ((𝐴𝐵)‘𝑦) = (𝐴𝑦))
4139, 40syl 17 . . . . . . . . . 10 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝐴𝐵)‘𝑦) = (𝐴𝑦))
4237, 41eleq12d 2724 . . . . . . . . 9 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → (((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦) ↔ (𝐴𝑥) ∈ (𝐴𝑦)))
4342imbi2d 329 . . . . . . . 8 ((𝑥 ∈ dom (𝐴𝐵) ∧ 𝑦 ∈ dom (𝐴𝐵)) → ((𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ (𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4443ralbidva 3014 . . . . . . 7 (𝑥 ∈ dom (𝐴𝐵) → (∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
4544ralbiia 3008 . . . . . 6 (∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)) ↔ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)))
4631, 45sylibr 224 . . . . 5 (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))
4746a1i 11 . . . 4 (𝐵 ∈ dom 𝐴 → (∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦)) → ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
4814, 23, 473anim123d 1446 . . 3 (𝐵 ∈ dom 𝐴 → ((𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))) → ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦)))))
49 df-smo 7488 . . 3 (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
50 df-smo 7488 . . 3 (Smo (𝐴𝐵) ↔ ((𝐴𝐵):dom (𝐴𝐵)⟶On ∧ Ord dom (𝐴𝐵) ∧ ∀𝑥 ∈ dom (𝐴𝐵)∀𝑦 ∈ dom (𝐴𝐵)(𝑥𝑦 → ((𝐴𝐵)‘𝑥) ∈ ((𝐴𝐵)‘𝑦))))
5148, 49, 503imtr4g 285 . 2 (𝐵 ∈ dom 𝐴 → (Smo 𝐴 → Smo (𝐴𝐵)))
5251impcom 445 1 ((Smo 𝐴𝐵 ∈ dom 𝐴) → Smo (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  cin 3606  wss 3607  dom cdm 5143  ran crn 5144  cres 5145  Ord word 5760  Oncon0 5761  Fun wfun 5920   Fn wfn 5921  wf 5922  cfv 5926  Smo wsmo 7487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-tr 4786  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ord 5764  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-fv 5934  df-smo 7488
This theorem is referenced by:  smores3  7495  alephsing  9136
  Copyright terms: Public domain W3C validator