Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smprngopr Structured version   Visualization version   GIF version

Theorem smprngopr 35332
Description: A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.)
Hypotheses
Ref Expression
smprngpr.1 𝐺 = (1st𝑅)
smprngpr.2 𝐻 = (2nd𝑅)
smprngpr.3 𝑋 = ran 𝐺
smprngpr.4 𝑍 = (GId‘𝐺)
smprngpr.5 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
smprngopr ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)

Proof of Theorem smprngopr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1132 . 2 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ RingOps)
2 smprngpr.1 . . . . 5 𝐺 = (1st𝑅)
3 smprngpr.4 . . . . 5 𝑍 = (GId‘𝐺)
42, 30idl 35305 . . . 4 (𝑅 ∈ RingOps → {𝑍} ∈ (Idl‘𝑅))
543ad2ant1 1129 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ∈ (Idl‘𝑅))
6 smprngpr.2 . . . . . . . 8 𝐻 = (2nd𝑅)
7 smprngpr.3 . . . . . . . 8 𝑋 = ran 𝐺
8 smprngpr.5 . . . . . . . 8 𝑈 = (GId‘𝐻)
92, 6, 7, 3, 80rngo 35307 . . . . . . 7 (𝑅 ∈ RingOps → (𝑍 = 𝑈𝑋 = {𝑍}))
10 eqcom 2830 . . . . . . 7 (𝑈 = 𝑍𝑍 = 𝑈)
11 eqcom 2830 . . . . . . 7 ({𝑍} = 𝑋𝑋 = {𝑍})
129, 10, 113bitr4g 316 . . . . . 6 (𝑅 ∈ RingOps → (𝑈 = 𝑍 ↔ {𝑍} = 𝑋))
1312necon3bid 3062 . . . . 5 (𝑅 ∈ RingOps → (𝑈𝑍 ↔ {𝑍} ≠ 𝑋))
1413biimpa 479 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → {𝑍} ≠ 𝑋)
15143adant3 1128 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ≠ 𝑋)
16 df-pr 4572 . . . . . . . 8 {{𝑍}, 𝑋} = ({{𝑍}} ∪ {𝑋})
1716eqeq2i 2836 . . . . . . 7 ((Idl‘𝑅) = {{𝑍}, 𝑋} ↔ (Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}))
18 eleq2 2903 . . . . . . . . 9 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → (𝑖 ∈ (Idl‘𝑅) ↔ 𝑖 ∈ ({{𝑍}} ∪ {𝑋})))
19 eleq2 2903 . . . . . . . . 9 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → (𝑗 ∈ (Idl‘𝑅) ↔ 𝑗 ∈ ({{𝑍}} ∪ {𝑋})))
2018, 19anbi12d 632 . . . . . . . 8 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ∧ 𝑗 ∈ ({{𝑍}} ∪ {𝑋}))))
21 elun 4127 . . . . . . . . . 10 (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑖 ∈ {{𝑍}} ∨ 𝑖 ∈ {𝑋}))
22 velsn 4585 . . . . . . . . . . 11 (𝑖 ∈ {{𝑍}} ↔ 𝑖 = {𝑍})
23 velsn 4585 . . . . . . . . . . 11 (𝑖 ∈ {𝑋} ↔ 𝑖 = 𝑋)
2422, 23orbi12i 911 . . . . . . . . . 10 ((𝑖 ∈ {{𝑍}} ∨ 𝑖 ∈ {𝑋}) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
2521, 24bitri 277 . . . . . . . . 9 (𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑖 = {𝑍} ∨ 𝑖 = 𝑋))
26 elun 4127 . . . . . . . . . 10 (𝑗 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑗 ∈ {{𝑍}} ∨ 𝑗 ∈ {𝑋}))
27 velsn 4585 . . . . . . . . . . 11 (𝑗 ∈ {{𝑍}} ↔ 𝑗 = {𝑍})
28 velsn 4585 . . . . . . . . . . 11 (𝑗 ∈ {𝑋} ↔ 𝑗 = 𝑋)
2927, 28orbi12i 911 . . . . . . . . . 10 ((𝑗 ∈ {{𝑍}} ∨ 𝑗 ∈ {𝑋}) ↔ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))
3026, 29bitri 277 . . . . . . . . 9 (𝑗 ∈ ({{𝑍}} ∪ {𝑋}) ↔ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))
3125, 30anbi12i 628 . . . . . . . 8 ((𝑖 ∈ ({{𝑍}} ∪ {𝑋}) ∧ 𝑗 ∈ ({{𝑍}} ∪ {𝑋})) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)))
3220, 31syl6bb 289 . . . . . . 7 ((Idl‘𝑅) = ({{𝑍}} ∪ {𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
3317, 32sylbi 219 . . . . . 6 ((Idl‘𝑅) = {{𝑍}, 𝑋} → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
34333ad2ant3 1131 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) ↔ ((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋))))
35 eqimss 4025 . . . . . . . . . . 11 (𝑖 = {𝑍} → 𝑖 ⊆ {𝑍})
3635orcd 869 . . . . . . . . . 10 (𝑖 = {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
3736adantr 483 . . . . . . . . 9 ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
3837a1d 25 . . . . . . . 8 ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
3938a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = {𝑍} ∧ 𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
40 eqimss 4025 . . . . . . . . . . 11 (𝑗 = {𝑍} → 𝑗 ⊆ {𝑍})
4140olcd 870 . . . . . . . . . 10 (𝑗 = {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4241adantl 484 . . . . . . . . 9 ((𝑖 = 𝑋𝑗 = {𝑍}) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4342a1d 25 . . . . . . . 8 ((𝑖 = 𝑋𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
4443a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = 𝑋𝑗 = {𝑍}) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
4536adantr 483 . . . . . . . . 9 ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))
4645a1d 25 . . . . . . . 8 ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
4746a1i 11 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = {𝑍} ∧ 𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
482rneqi 5809 . . . . . . . . . . . . . 14 ran 𝐺 = ran (1st𝑅)
497, 48eqtri 2846 . . . . . . . . . . . . 13 𝑋 = ran (1st𝑅)
5049, 6, 8rngo1cl 35219 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → 𝑈𝑋)
5150adantr 483 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → 𝑈𝑋)
526, 49, 8rngolidm 35217 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ RingOps ∧ 𝑈𝑋) → (𝑈𝐻𝑈) = 𝑈)
5350, 52mpdan 685 . . . . . . . . . . . . . . 15 (𝑅 ∈ RingOps → (𝑈𝐻𝑈) = 𝑈)
5453eleq1d 2899 . . . . . . . . . . . . . 14 (𝑅 ∈ RingOps → ((𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈 ∈ {𝑍}))
558fvexi 6686 . . . . . . . . . . . . . . 15 𝑈 ∈ V
5655elsn 4584 . . . . . . . . . . . . . 14 (𝑈 ∈ {𝑍} ↔ 𝑈 = 𝑍)
5754, 56syl6bb 289 . . . . . . . . . . . . 13 (𝑅 ∈ RingOps → ((𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈 = 𝑍))
5857necon3bbid 3055 . . . . . . . . . . . 12 (𝑅 ∈ RingOps → (¬ (𝑈𝐻𝑈) ∈ {𝑍} ↔ 𝑈𝑍))
5958biimpar 480 . . . . . . . . . . 11 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ¬ (𝑈𝐻𝑈) ∈ {𝑍})
60 oveq1 7165 . . . . . . . . . . . . . 14 (𝑥 = 𝑈 → (𝑥𝐻𝑦) = (𝑈𝐻𝑦))
6160eleq1d 2899 . . . . . . . . . . . . 13 (𝑥 = 𝑈 → ((𝑥𝐻𝑦) ∈ {𝑍} ↔ (𝑈𝐻𝑦) ∈ {𝑍}))
6261notbid 320 . . . . . . . . . . . 12 (𝑥 = 𝑈 → (¬ (𝑥𝐻𝑦) ∈ {𝑍} ↔ ¬ (𝑈𝐻𝑦) ∈ {𝑍}))
63 oveq2 7166 . . . . . . . . . . . . . 14 (𝑦 = 𝑈 → (𝑈𝐻𝑦) = (𝑈𝐻𝑈))
6463eleq1d 2899 . . . . . . . . . . . . 13 (𝑦 = 𝑈 → ((𝑈𝐻𝑦) ∈ {𝑍} ↔ (𝑈𝐻𝑈) ∈ {𝑍}))
6564notbid 320 . . . . . . . . . . . 12 (𝑦 = 𝑈 → (¬ (𝑈𝐻𝑦) ∈ {𝑍} ↔ ¬ (𝑈𝐻𝑈) ∈ {𝑍}))
6662, 65rspc2ev 3637 . . . . . . . . . . 11 ((𝑈𝑋𝑈𝑋 ∧ ¬ (𝑈𝐻𝑈) ∈ {𝑍}) → ∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍})
6751, 51, 59, 66syl3anc 1367 . . . . . . . . . 10 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍})
68 rexnal2 3260 . . . . . . . . . 10 (∃𝑥𝑋𝑦𝑋 ¬ (𝑥𝐻𝑦) ∈ {𝑍} ↔ ¬ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍})
6967, 68sylib 220 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ¬ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍})
7069pm2.21d 121 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
71 raleq 3407 . . . . . . . . . 10 (𝑖 = 𝑋 → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍}))
72 raleq 3407 . . . . . . . . . . 11 (𝑗 = 𝑋 → (∀𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7372ralbidv 3199 . . . . . . . . . 10 (𝑗 = 𝑋 → (∀𝑥𝑋𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7471, 73sylan9bb 512 . . . . . . . . 9 ((𝑖 = 𝑋𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍}))
7574imbi1d 344 . . . . . . . 8 ((𝑖 = 𝑋𝑗 = 𝑋) → ((∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})) ↔ (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7670, 75syl5ibrcom 249 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → ((𝑖 = 𝑋𝑗 = 𝑋) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7739, 44, 47, 76ccased 1033 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝑈𝑍) → (((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
78773adant3 1128 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → (((𝑖 = {𝑍} ∨ 𝑖 = 𝑋) ∧ (𝑗 = {𝑍} ∨ 𝑗 = 𝑋)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
7934, 78sylbid 242 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ((𝑖 ∈ (Idl‘𝑅) ∧ 𝑗 ∈ (Idl‘𝑅)) → (∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍}))))
8079ralrimivv 3192 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))
812, 6, 7ispridl 35314 . . . 4 (𝑅 ∈ RingOps → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))))
82813ad2ant1 1129 . . 3 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → ({𝑍} ∈ (PrIdl‘𝑅) ↔ ({𝑍} ∈ (Idl‘𝑅) ∧ {𝑍} ≠ 𝑋 ∧ ∀𝑖 ∈ (Idl‘𝑅)∀𝑗 ∈ (Idl‘𝑅)(∀𝑥𝑖𝑦𝑗 (𝑥𝐻𝑦) ∈ {𝑍} → (𝑖 ⊆ {𝑍} ∨ 𝑗 ⊆ {𝑍})))))
835, 15, 80, 82mpbir3and 1338 . 2 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → {𝑍} ∈ (PrIdl‘𝑅))
842, 3isprrngo 35330 . 2 (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅)))
851, 83, 84sylanbrc 585 1 ((𝑅 ∈ RingOps ∧ 𝑈𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  cun 3936  wss 3938  {csn 4569  {cpr 4571  ran crn 5558  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  GIdcgi 28269  RingOpscrngo 35174  Idlcidl 35287  PrIdlcpridl 35288  PrRingcprrng 35326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-1st 7691  df-2nd 7692  df-grpo 28272  df-gid 28273  df-ginv 28274  df-ablo 28324  df-ass 35123  df-exid 35125  df-mgmOLD 35129  df-sgrOLD 35141  df-mndo 35147  df-rngo 35175  df-idl 35290  df-pridl 35291  df-prrngo 35328
This theorem is referenced by:  divrngpr  35333
  Copyright terms: Public domain W3C validator