MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smumul Structured version   Visualization version   GIF version

Theorem smumul 15832
Description: For sequences that correspond to valid integers, the sequence multiplication function produces the sequence for the product. This is effectively a proof of the correctness of the multiplication process, implemented in terms of logic gates for df-sad 15790, whose correctness is verified in sadadd 15806.

Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.)

Assertion
Ref Expression
smumul ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵)))

Proof of Theorem smumul
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 bitsss 15765 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
2 bitsss 15765 . . . . . 6 (bits‘𝐵) ⊆ ℕ0
3 smucl 15823 . . . . . 6 (((bits‘𝐴) ⊆ ℕ0 ∧ (bits‘𝐵) ⊆ ℕ0) → ((bits‘𝐴) smul (bits‘𝐵)) ⊆ ℕ0)
41, 2, 3mp2an 688 . . . . 5 ((bits‘𝐴) smul (bits‘𝐵)) ⊆ ℕ0
54sseli 3962 . . . 4 (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) → 𝑘 ∈ ℕ0)
65a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) → 𝑘 ∈ ℕ0))
7 bitsss 15765 . . . . 5 (bits‘(𝐴 · 𝐵)) ⊆ ℕ0
87sseli 3962 . . . 4 (𝑘 ∈ (bits‘(𝐴 · 𝐵)) → 𝑘 ∈ ℕ0)
98a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ (bits‘(𝐴 · 𝐵)) → 𝑘 ∈ ℕ0))
10 simpll 763 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℤ)
11 simplr 765 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐵 ∈ ℤ)
12 simpr 485 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
13 1nn0 11902 . . . . . . . . . . . . . 14 1 ∈ ℕ0
1413a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 1 ∈ ℕ0)
1512, 14nn0addcld 11948 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ0)
1610, 11, 15smumullem 15831 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)))
1716ineq1d 4187 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ∩ (0..^(𝑘 + 1))))
18 2nn 11699 . . . . . . . . . . . . . . . 16 2 ∈ ℕ
1918a1i 11 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 2 ∈ ℕ)
2019, 15nnexpcld 13596 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℕ)
2110, 20zmodcld 13250 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) ∈ ℕ0)
2221nn0zd 12074 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 mod (2↑(𝑘 + 1))) ∈ ℤ)
2322, 11zmulcld 12082 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) ∈ ℤ)
24 bitsmod 15775 . . . . . . . . . . 11 ((((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ∩ (0..^(𝑘 + 1))))
2523, 15, 24syl2anc 584 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘((𝐴 mod (2↑(𝑘 + 1))) · 𝐵)) ∩ (0..^(𝑘 + 1))))
2617, 25eqtr4d 2859 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))))
27 inass 4195 . . . . . . . . . . . . 13 (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) = ((bits‘𝐴) ∩ ((0..^(𝑘 + 1)) ∩ (0..^(𝑘 + 1))))
28 inidm 4194 . . . . . . . . . . . . . 14 ((0..^(𝑘 + 1)) ∩ (0..^(𝑘 + 1))) = (0..^(𝑘 + 1))
2928ineq2i 4185 . . . . . . . . . . . . 13 ((bits‘𝐴) ∩ ((0..^(𝑘 + 1)) ∩ (0..^(𝑘 + 1)))) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1)))
3027, 29eqtri 2844 . . . . . . . . . . . 12 (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) = ((bits‘𝐴) ∩ (0..^(𝑘 + 1)))
3130oveq1i 7155 . . . . . . . . . . 11 ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) = (((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1))))
3231ineq1i 4184 . . . . . . . . . 10 (((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1))) = ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1)))
33 inss1 4204 . . . . . . . . . . . 12 ((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ⊆ (bits‘𝐴)
341a1i 11 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
3533, 34sstrid 3977 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ⊆ ℕ0)
362a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘𝐵) ⊆ ℕ0)
3735, 36, 15smueq 15830 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1))))
3834, 36, 15smueq 15830 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul ((bits‘𝐵) ∩ (0..^(𝑘 + 1)))) ∩ (0..^(𝑘 + 1))))
3932, 37, 383eqtr4a 2882 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((((bits‘𝐴) ∩ (0..^(𝑘 + 1))) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))))
4020nnrpd 12419 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (2↑(𝑘 + 1)) ∈ ℝ+)
4110zred 12076 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℝ)
42 modabs2 13263 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ (2↑(𝑘 + 1)) ∈ ℝ+) → ((𝐴 mod (2↑(𝑘 + 1))) mod (2↑(𝑘 + 1))) = (𝐴 mod (2↑(𝑘 + 1))))
4341, 40, 42syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝐴 mod (2↑(𝑘 + 1))) mod (2↑(𝑘 + 1))) = (𝐴 mod (2↑(𝑘 + 1))))
44 eqidd 2822 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐵 mod (2↑(𝑘 + 1))) = (𝐵 mod (2↑(𝑘 + 1))))
4522, 10, 11, 11, 40, 43, 44modmul12d 13283 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1))) = ((𝐴 · 𝐵) mod (2↑(𝑘 + 1))))
4645fveq2d 6668 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘(((𝐴 mod (2↑(𝑘 + 1))) · 𝐵) mod (2↑(𝑘 + 1)))) = (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))))
4726, 39, 463eqtr3d 2864 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))))
4810, 11zmulcld 12082 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℤ)
49 bitsmod 15775 . . . . . . . . 9 (((𝐴 · 𝐵) ∈ ℤ ∧ (𝑘 + 1) ∈ ℕ0) → (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))))
5048, 15, 49syl2anc 584 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (bits‘((𝐴 · 𝐵) mod (2↑(𝑘 + 1)))) = ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))))
5147, 50eqtrd 2856 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) = ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))))
5251eleq2d 2898 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ 𝑘 ∈ ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1)))))
53 elin 4168 . . . . . 6 (𝑘 ∈ (((bits‘𝐴) smul (bits‘𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
54 elin 4168 . . . . . 6 (𝑘 ∈ ((bits‘(𝐴 · 𝐵)) ∩ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))))
5552, 53, 543bitr3g 314 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → ((𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1))) ↔ (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
56 nn0uz 12269 . . . . . . . . 9 0 = (ℤ‘0)
5712, 56eleqtrdi 2923 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (ℤ‘0))
58 eluzfz2b 12906 . . . . . . . 8 (𝑘 ∈ (ℤ‘0) ↔ 𝑘 ∈ (0...𝑘))
5957, 58sylib 219 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0...𝑘))
6012nn0zd 12074 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℤ)
61 fzval3 13096 . . . . . . . 8 (𝑘 ∈ ℤ → (0...𝑘) = (0..^(𝑘 + 1)))
6260, 61syl 17 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (0...𝑘) = (0..^(𝑘 + 1)))
6359, 62eleqtrd 2915 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ (0..^(𝑘 + 1)))
6463biantrud 532 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
6563biantrud 532 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ↔ (𝑘 ∈ (bits‘(𝐴 · 𝐵)) ∧ 𝑘 ∈ (0..^(𝑘 + 1)))))
6655, 64, 653bitr4d 312 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 · 𝐵))))
6766ex 413 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ℕ0 → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 · 𝐵)))))
686, 9, 67pm5.21ndd 381 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝑘 ∈ ((bits‘𝐴) smul (bits‘𝐵)) ↔ 𝑘 ∈ (bits‘(𝐴 · 𝐵))))
6968eqrdv 2819 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  cin 3934  wss 3935  cfv 6349  (class class class)co 7145  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cn 11627  2c2 11681  0cn0 11886  cz 11970  cuz 12232  +crp 12379  ...cfz 12882  ..^cfzo 13023   mod cmo 13227  cexp 13419  bitscbits 15758   smul csmu 15760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-xor 1496  df-tru 1531  df-fal 1541  df-had 1585  df-cad 1599  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4833  df-int 4870  df-iun 4914  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-inf 8896  df-oi 8963  df-dju 9319  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-xnn0 11957  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-sum 15033  df-dvds 15598  df-bits 15761  df-sad 15790  df-smu 15815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator