MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smupval Structured version   Visualization version   GIF version

Theorem smupval 15839
Description: Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smupval.a (𝜑𝐴 ⊆ ℕ0)
smupval.b (𝜑𝐵 ⊆ ℕ0)
smupval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smupval.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
smupval (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)

Proof of Theorem smupval
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smupval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2 nn0uz 12283 . . . . 5 0 = (ℤ‘0)
31, 2eleqtrdi 2925 . . . 4 (𝜑𝑁 ∈ (ℤ‘0))
4 eluzfz2b 12919 . . . 4 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
53, 4sylib 220 . . 3 (𝜑𝑁 ∈ (0...𝑁))
6 fveq2 6672 . . . . . 6 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
7 fveq2 6672 . . . . . 6 (𝑥 = 0 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))
86, 7eqeq12d 2839 . . . . 5 (𝑥 = 0 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0)))
98imbi2d 343 . . . 4 (𝑥 = 0 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))))
10 fveq2 6672 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
11 fveq2 6672 . . . . . 6 (𝑥 = 𝑘 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))
1210, 11eqeq12d 2839 . . . . 5 (𝑥 = 𝑘 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)))
1312imbi2d 343 . . . 4 (𝑥 = 𝑘 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))))
14 fveq2 6672 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
15 fveq2 6672 . . . . . 6 (𝑥 = (𝑘 + 1) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))
1614, 15eqeq12d 2839 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))
1716imbi2d 343 . . . 4 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
18 fveq2 6672 . . . . . 6 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
19 fveq2 6672 . . . . . 6 (𝑥 = 𝑁 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))
2018, 19eqeq12d 2839 . . . . 5 (𝑥 = 𝑁 → ((𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) ↔ (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))
2120imbi2d 343 . . . 4 (𝑥 = 𝑁 → ((𝜑 → (𝑃𝑥) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥)) ↔ (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))))
22 smupval.a . . . . . . 7 (𝜑𝐴 ⊆ ℕ0)
23 smupval.b . . . . . . 7 (𝜑𝐵 ⊆ ℕ0)
24 smupval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2522, 23, 24smup0 15830 . . . . . 6 (𝜑 → (𝑃‘0) = ∅)
26 inss1 4207 . . . . . . . 8 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
2726, 22sstrid 3980 . . . . . . 7 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
28 eqid 2823 . . . . . . 7 seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2927, 23, 28smup0 15830 . . . . . 6 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) = ∅)
3025, 29eqtr4d 2861 . . . . 5 (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0))
3130a1i 11 . . . 4 (𝑁 ∈ (ℤ‘0) → (𝜑 → (𝑃‘0) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0)))
32 oveq1 7165 . . . . . . 7 ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3322adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3423adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
35 elfzouz 13045 . . . . . . . . . . 11 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
3635adantl 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
3736, 2eleqtrrdi 2926 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
3833, 34, 24, 37smupp1 15831 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3927adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
4039, 34, 28, 37smupp1 15831 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)}))
41 elin 4171 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ (𝑘𝐴𝑘 ∈ (0..^𝑁)))
4241rbaib 541 . . . . . . . . . . . . 13 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘𝐴))
4342adantl 484 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ↔ 𝑘𝐴))
4443anbi1d 631 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵) ↔ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)))
4544rabbidv 3482 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)} = {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})
4645oveq2d 7174 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
4740, 46eqtrd 2858 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
4838, 47eqeq12d 2839 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) = ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
4932, 48syl5ibr 248 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))))
5049expcom 416 . . . . 5 (𝑘 ∈ (0..^𝑁) → (𝜑 → ((𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
5150a2d 29 . . . 4 (𝑘 ∈ (0..^𝑁) → ((𝜑 → (𝑃𝑘) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘)) → (𝜑 → (𝑃‘(𝑘 + 1)) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))))
529, 13, 17, 21, 31, 51fzind2 13158 . . 3 (𝑁 ∈ (0...𝑁) → (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁)))
535, 52mpcom 38 . 2 (𝜑 → (𝑃𝑁) = (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁))
54 inss2 4208 . . . 4 (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
5554a1i 11 . . 3 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ (0..^𝑁))
561nn0zd 12088 . . . 4 (𝜑𝑁 ∈ ℤ)
57 uzid 12261 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
5856, 57syl 17 . . 3 (𝜑𝑁 ∈ (ℤ𝑁))
5927, 23, 28, 1, 55, 58smupvallem 15834 . 2 (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ (𝐴 ∩ (0..^𝑁)) ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
6053, 59eqtrd 2858 1 (𝜑 → (𝑃𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3144  cin 3937  wss 3938  c0 4293  ifcif 4469  𝒫 cpw 4541  cmpt 5148  cfv 6357  (class class class)co 7158  cmpo 7160  0cc0 10539  1c1 10540   + caddc 10542  cmin 10872  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036  seqcseq 13372   sadd csad 15771   smul csmu 15772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-fal 1550  df-had 1594  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-dvds 15610  df-bits 15773  df-sad 15802  df-smu 15827
This theorem is referenced by:  smup1  15840  smueqlem  15841
  Copyright terms: Public domain W3C validator