Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  smuval2 Structured version   Visualization version   GIF version

Theorem smuval2 15123
 Description: The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smuval.n (𝜑𝑁 ∈ ℕ0)
smuval2.m (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
Assertion
Ref Expression
smuval2 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝑛,𝑁   𝜑,𝑛   𝐵,𝑚,𝑛,𝑝
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑀(𝑚,𝑛,𝑝)   𝑁(𝑚,𝑝)

Proof of Theorem smuval2
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval2.m . 2 (𝜑𝑀 ∈ (ℤ‘(𝑁 + 1)))
2 fveq2 6150 . . . . . 6 (𝑥 = (𝑁 + 1) → (𝑃𝑥) = (𝑃‘(𝑁 + 1)))
32eleq2d 2689 . . . . 5 (𝑥 = (𝑁 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
43bibi2d 332 . . . 4 (𝑥 = (𝑁 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
54imbi2d 330 . . 3 (𝑥 = (𝑁 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))))
6 fveq2 6150 . . . . . 6 (𝑥 = 𝑘 → (𝑃𝑥) = (𝑃𝑘))
76eleq2d 2689 . . . . 5 (𝑥 = 𝑘 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑘)))
87bibi2d 332 . . . 4 (𝑥 = 𝑘 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
98imbi2d 330 . . 3 (𝑥 = 𝑘 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)))))
10 fveq2 6150 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝑃𝑥) = (𝑃‘(𝑘 + 1)))
1110eleq2d 2689 . . . . 5 (𝑥 = (𝑘 + 1) → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))
1211bibi2d 332 . . . 4 (𝑥 = (𝑘 + 1) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
1312imbi2d 330 . . 3 (𝑥 = (𝑘 + 1) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
14 fveq2 6150 . . . . . 6 (𝑥 = 𝑀 → (𝑃𝑥) = (𝑃𝑀))
1514eleq2d 2689 . . . . 5 (𝑥 = 𝑀 → (𝑁 ∈ (𝑃𝑥) ↔ 𝑁 ∈ (𝑃𝑀)))
1615bibi2d 332 . . . 4 (𝑥 = 𝑀 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥)) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1716imbi2d 330 . . 3 (𝑥 = 𝑀 → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑥))) ↔ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))))
18 smuval.a . . . . 5 (𝜑𝐴 ⊆ ℕ0)
19 smuval.b . . . . 5 (𝜑𝐵 ⊆ ℕ0)
20 smuval.p . . . . 5 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
21 smuval.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
2218, 19, 20, 21smuval 15122 . . . 4 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1))))
2322a1i 11 . . 3 ((𝑁 + 1) ∈ ℤ → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))))
2418adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐴 ⊆ ℕ0)
2519adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝐵 ⊆ ℕ0)
26 peano2nn0 11278 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2721, 26syl 17 . . . . . . . . . . 11 (𝜑 → (𝑁 + 1) ∈ ℕ0)
28 eluznn0 11701 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℕ0𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
2927, 28sylan 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑘 ∈ ℕ0)
3024, 25, 20, 29smupp1 15121 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃‘(𝑘 + 1)) = ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}))
3130eleq2d 2689 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)})))
3224, 25, 20smupf 15119 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑃:ℕ0⟶𝒫 ℕ0)
3332, 29ffvelrnd 6317 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ∈ 𝒫 ℕ0)
3433elpwid 4146 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑃𝑘) ⊆ ℕ0)
35 ssrab2 3671 . . . . . . . . . . . . . 14 {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0
3635a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ⊆ ℕ0)
3727adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
3834, 36, 37sadeq 15113 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))))
39 inrab2 3881 . . . . . . . . . . . . . . . . 17 ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}
40 inss1 3816 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ0 ∩ (0..^(𝑁 + 1))) ⊆ ℕ0
41 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))))
4240, 41sseldi 3586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℕ0)
4342nn0red 11297 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ ℝ)
4421adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℕ0)
4544adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℕ0)
4645nn0red 11297 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑁 ∈ ℝ)
47 1red 10000 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 1 ∈ ℝ)
4846, 47readdcld 10014 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ∈ ℝ)
4929adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℕ0)
5049nn0red 11297 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑘 ∈ ℝ)
51 inss2 3817 . . . . . . . . . . . . . . . . . . . . . . . 24 (ℕ0 ∩ (0..^(𝑁 + 1))) ⊆ (0..^(𝑁 + 1))
5251, 41sseldi 3586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 ∈ (0..^(𝑁 + 1)))
53 elfzolt2 12417 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ (0..^(𝑁 + 1)) → 𝑛 < (𝑁 + 1))
5452, 53syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < (𝑁 + 1))
55 eluzle 11644 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝑁 + 1) ≤ 𝑘)
5655ad2antlr 762 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑁 + 1) ≤ 𝑘)
5743, 48, 50, 54, 56ltletrd 10142 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝑛 < 𝑘)
5843, 50ltnled 10129 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (𝑛 < 𝑘 ↔ ¬ 𝑘𝑛))
5957, 58mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ 𝑘𝑛)
6025adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → 𝐵 ⊆ ℕ0)
6160sseld 3587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → (𝑛𝑘) ∈ ℕ0))
62 nn0ge0 11263 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛𝑘) ∈ ℕ0 → 0 ≤ (𝑛𝑘))
6361, 62syl6 35 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵 → 0 ≤ (𝑛𝑘)))
6443, 50subge0d 10562 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → (0 ≤ (𝑛𝑘) ↔ 𝑘𝑛))
6563, 64sylibd 229 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑛𝑘) ∈ 𝐵𝑘𝑛))
6665adantld 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ((𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵) → 𝑘𝑛))
6759, 66mtod 189 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1)))) → ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
6867ralrimiva 2965 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
69 rabeq0 3936 . . . . . . . . . . . . . . . . . 18 ({𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ¬ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵))
7068, 69sylibr 224 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → {𝑛 ∈ (ℕ0 ∩ (0..^(𝑁 + 1))) ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} = ∅)
7139, 70syl5eq 2672 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1))) = ∅)
7271oveq2d 6621 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅))
73 inss1 3816 . . . . . . . . . . . . . . . . 17 ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ (𝑃𝑘)
7473, 34syl5ss 3599 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0)
75 sadid1 15109 . . . . . . . . . . . . . . . 16 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ⊆ ℕ0 → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7674, 75syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ∅) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7772, 76eqtrd 2660 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
7877ineq1d 3796 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))))
79 inass 3806 . . . . . . . . . . . . . 14 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))))
80 inidm 3805 . . . . . . . . . . . . . . 15 ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1))) = (0..^(𝑁 + 1))
8180ineq2i 3794 . . . . . . . . . . . . . 14 ((𝑃𝑘) ∩ ((0..^(𝑁 + 1)) ∩ (0..^(𝑁 + 1)))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8279, 81eqtri 2648 . . . . . . . . . . . . 13 (((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))
8378, 82syl6eq 2676 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((((𝑃𝑘) ∩ (0..^(𝑁 + 1))) sadd ({𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)} ∩ (0..^(𝑁 + 1)))) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8438, 83eqtrd 2660 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) = ((𝑃𝑘) ∩ (0..^(𝑁 + 1))))
8584eleq2d 2689 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ 𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1)))))
86 elin 3779 . . . . . . . . . 10 (𝑁 ∈ (((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
87 elin 3779 . . . . . . . . . 10 (𝑁 ∈ ((𝑃𝑘) ∩ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1))))
8885, 86, 873bitr3g 302 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1))) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
89 nn0uz 11666 . . . . . . . . . . . . 13 0 = (ℤ‘0)
9044, 89syl6eleq 2714 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (ℤ‘0))
91 eluzfz2 12288 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘0) → 𝑁 ∈ (0...𝑁))
9290, 91syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0...𝑁))
9344nn0zd 11424 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ ℤ)
94 fzval3 12474 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (0...𝑁) = (0..^(𝑁 + 1)))
9593, 94syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (0...𝑁) = (0..^(𝑁 + 1)))
9692, 95eleqtrd 2706 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → 𝑁 ∈ (0..^(𝑁 + 1)))
9796biantrud 528 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9896biantrud 528 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃𝑘) ↔ (𝑁 ∈ (𝑃𝑘) ∧ 𝑁 ∈ (0..^(𝑁 + 1)))))
9988, 97, 983bitr4d 300 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ ((𝑃𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘𝐴 ∧ (𝑛𝑘) ∈ 𝐵)}) ↔ 𝑁 ∈ (𝑃𝑘)))
10031, 99bitrd 268 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → (𝑁 ∈ (𝑃‘(𝑘 + 1)) ↔ 𝑁 ∈ (𝑃𝑘)))
101100bibi2d 332 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))) ↔ (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))))
102101biimprd 238 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘(𝑁 + 1))) → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1)))))
103102expcom 451 . . . 4 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → ((𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘)) → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
104103a2d 29 . . 3 (𝑘 ∈ (ℤ‘(𝑁 + 1)) → ((𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑘))) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑘 + 1))))))
1055, 9, 13, 17, 23, 104uzind4 11690 . 2 (𝑀 ∈ (ℤ‘(𝑁 + 1)) → (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀))))
1061, 105mpcom 38 1 (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃𝑀)))