![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sn0topon | Structured version Visualization version GIF version |
Description: The singleton of the empty set is a topology on the empty set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
sn0topon | ⊢ {∅} ∈ (TopOn‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 4486 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 4940 | . . 3 ⊢ ∅ ∈ V | |
3 | distopon 21001 | . . 3 ⊢ (∅ ∈ V → 𝒫 ∅ ∈ (TopOn‘∅)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 𝒫 ∅ ∈ (TopOn‘∅) |
5 | 1, 4 | eqeltrri 2834 | 1 ⊢ {∅} ∈ (TopOn‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2137 Vcvv 3338 ∅c0 4056 𝒫 cpw 4300 {csn 4319 ‘cfv 6047 TopOnctopon 20915 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-ral 3053 df-rex 3054 df-rab 3057 df-v 3340 df-sbc 3575 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-op 4326 df-uni 4587 df-br 4803 df-opab 4863 df-mpt 4880 df-id 5172 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-iota 6010 df-fun 6049 df-fv 6055 df-top 20899 df-topon 20916 |
This theorem is referenced by: sn0top 21003 0cnf 40591 |
Copyright terms: Public domain | W3C validator |