Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snelmap Structured version   Visualization version   GIF version

Theorem snelmap 38739
Description: Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
snelmap.a (𝜑𝐴𝑉)
snelmap.b (𝜑𝐵𝑊)
snelmap.n (𝜑𝐴 ≠ ∅)
snelmap.e (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴))
Assertion
Ref Expression
snelmap (𝜑𝑥𝐵)

Proof of Theorem snelmap
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snelmap.n . . 3 (𝜑𝐴 ≠ ∅)
2 n0 3907 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
31, 2sylib 208 . 2 (𝜑 → ∃𝑦 𝑦𝐴)
4 vex 3189 . . . . . . . 8 𝑥 ∈ V
54fvconst2 6423 . . . . . . 7 (𝑦𝐴 → ((𝐴 × {𝑥})‘𝑦) = 𝑥)
65eqcomd 2627 . . . . . 6 (𝑦𝐴𝑥 = ((𝐴 × {𝑥})‘𝑦))
76adantl 482 . . . . 5 ((𝜑𝑦𝐴) → 𝑥 = ((𝐴 × {𝑥})‘𝑦))
8 snelmap.e . . . . . . . 8 (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴))
9 snelmap.b . . . . . . . . 9 (𝜑𝐵𝑊)
10 snelmap.a . . . . . . . . 9 (𝜑𝐴𝑉)
11 elmapg 7815 . . . . . . . . 9 ((𝐵𝑊𝐴𝑉) → ((𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑥}):𝐴𝐵))
129, 10, 11syl2anc 692 . . . . . . . 8 (𝜑 → ((𝐴 × {𝑥}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑥}):𝐴𝐵))
138, 12mpbid 222 . . . . . . 7 (𝜑 → (𝐴 × {𝑥}):𝐴𝐵)
1413adantr 481 . . . . . 6 ((𝜑𝑦𝐴) → (𝐴 × {𝑥}):𝐴𝐵)
15 simpr 477 . . . . . 6 ((𝜑𝑦𝐴) → 𝑦𝐴)
1614, 15ffvelrnd 6316 . . . . 5 ((𝜑𝑦𝐴) → ((𝐴 × {𝑥})‘𝑦) ∈ 𝐵)
177, 16eqeltrd 2698 . . . 4 ((𝜑𝑦𝐴) → 𝑥𝐵)
1817ex 450 . . 3 (𝜑 → (𝑦𝐴𝑥𝐵))
1918exlimdv 1858 . 2 (𝜑 → (∃𝑦 𝑦𝐴𝑥𝐵))
203, 19mpd 15 1 (𝜑𝑥𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  c0 3891  {csn 4148   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804
This theorem is referenced by:  mapssbi  38879
  Copyright terms: Public domain W3C validator