![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snlindsntorlem | Structured version Visualization version GIF version |
Description: Lemma for snlindsntor 42655. (Contributed by AV, 15-Apr-2019.) |
Ref | Expression |
---|---|
snlindsntor.b | ⊢ 𝐵 = (Base‘𝑀) |
snlindsntor.r | ⊢ 𝑅 = (Scalar‘𝑀) |
snlindsntor.s | ⊢ 𝑆 = (Base‘𝑅) |
snlindsntor.0 | ⊢ 0 = (0g‘𝑅) |
snlindsntor.z | ⊢ 𝑍 = (0g‘𝑀) |
snlindsntor.t | ⊢ · = ( ·𝑠 ‘𝑀) |
Ref | Expression |
---|---|
snlindsntorlem | ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2693 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉}) | |
2 | fsng 6487 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) | |
3 | 2 | adantll 752 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠} ↔ {〈𝑋, 𝑠〉} = {〈𝑋, 𝑠〉})) |
4 | 1, 3 | mpbird 247 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶{𝑠}) |
5 | snssi 4415 | . . . . . 6 ⊢ (𝑠 ∈ 𝑆 → {𝑠} ⊆ 𝑆) | |
6 | 5 | adantl 473 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {𝑠} ⊆ 𝑆) |
7 | 4, 6 | fssd 6138 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆) |
8 | snlindsntor.s | . . . . . . 7 ⊢ 𝑆 = (Base‘𝑅) | |
9 | fvex 6282 | . . . . . . 7 ⊢ (Base‘𝑅) ∈ V | |
10 | 8, 9 | eqeltri 2767 | . . . . . 6 ⊢ 𝑆 ∈ V |
11 | snex 4981 | . . . . . 6 ⊢ {𝑋} ∈ V | |
12 | 10, 11 | pm3.2i 470 | . . . . 5 ⊢ (𝑆 ∈ V ∧ {𝑋} ∈ V) |
13 | elmapg 7955 | . . . . 5 ⊢ ((𝑆 ∈ V ∧ {𝑋} ∈ V) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑𝑚 {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) | |
14 | 12, 13 | mp1i 13 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ∈ (𝑆 ↑𝑚 {𝑋}) ↔ {〈𝑋, 𝑠〉}:{𝑋}⟶𝑆)) |
15 | 7, 14 | mpbird 247 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → {〈𝑋, 𝑠〉} ∈ (𝑆 ↑𝑚 {𝑋})) |
16 | oveq1 6740 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓( linC ‘𝑀){𝑋}) = ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋})) | |
17 | 16 | eqeq1d 2694 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓( linC ‘𝑀){𝑋}) = 𝑍 ↔ ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍)) |
18 | fveq1 6271 | . . . . . 6 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (𝑓‘𝑋) = ({〈𝑋, 𝑠〉}‘𝑋)) | |
19 | 18 | eqeq1d 2694 | . . . . 5 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → ((𝑓‘𝑋) = 0 ↔ ({〈𝑋, 𝑠〉}‘𝑋) = 0 )) |
20 | 17, 19 | imbi12d 333 | . . . 4 ⊢ (𝑓 = {〈𝑋, 𝑠〉} → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ))) |
21 | snlindsntor.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑀) | |
22 | snlindsntor.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑀) | |
23 | snlindsntor.t | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑀) | |
24 | 21, 22, 8, 23 | lincvalsng 42600 | . . . . . . 7 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
25 | 24 | 3expa 1111 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = (𝑠 · 𝑋)) |
26 | 25 | eqeq1d 2694 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 ↔ (𝑠 · 𝑋) = 𝑍)) |
27 | fvsng 6531 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) | |
28 | 27 | adantll 752 | . . . . . 6 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ({〈𝑋, 𝑠〉}‘𝑋) = 𝑠) |
29 | 28 | eqeq1d 2694 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (({〈𝑋, 𝑠〉}‘𝑋) = 0 ↔ 𝑠 = 0 )) |
30 | 26, 29 | imbi12d 333 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → ((({〈𝑋, 𝑠〉} ( linC ‘𝑀){𝑋}) = 𝑍 → ({〈𝑋, 𝑠〉}‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
31 | 20, 30 | sylan9bbr 739 | . . 3 ⊢ ((((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) ∧ 𝑓 = {〈𝑋, 𝑠〉}) → (((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) ↔ ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
32 | 15, 31 | rspcdv 3384 | . 2 ⊢ (((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) ∧ 𝑠 ∈ 𝑆) → (∀𝑓 ∈ (𝑆 ↑𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
33 | 32 | ralrimdva 3039 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑋 ∈ 𝐵) → (∀𝑓 ∈ (𝑆 ↑𝑚 {𝑋})((𝑓( linC ‘𝑀){𝑋}) = 𝑍 → (𝑓‘𝑋) = 0 ) → ∀𝑠 ∈ 𝑆 ((𝑠 · 𝑋) = 𝑍 → 𝑠 = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1564 ∈ wcel 2071 ∀wral 2982 Vcvv 3272 ⊆ wss 3648 {csn 4253 〈cop 4259 ⟶wf 5965 ‘cfv 5969 (class class class)co 6733 ↑𝑚 cmap 7942 Basecbs 15948 Scalarcsca 16035 ·𝑠 cvsca 16036 0gc0g 16191 LModclmod 18954 linC clinc 42588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1818 ax-5 1920 ax-6 1986 ax-7 2022 ax-8 2073 ax-9 2080 ax-10 2100 ax-11 2115 ax-12 2128 ax-13 2323 ax-ext 2672 ax-rep 4847 ax-sep 4857 ax-nul 4865 ax-pow 4916 ax-pr 4979 ax-un 7034 ax-inf2 8619 ax-cnex 10073 ax-resscn 10074 ax-1cn 10075 ax-icn 10076 ax-addcl 10077 ax-addrcl 10078 ax-mulcl 10079 ax-mulrcl 10080 ax-mulcom 10081 ax-addass 10082 ax-mulass 10083 ax-distr 10084 ax-i2m1 10085 ax-1ne0 10086 ax-1rid 10087 ax-rnegex 10088 ax-rrecex 10089 ax-cnre 10090 ax-pre-lttri 10091 ax-pre-lttrn 10092 ax-pre-ltadd 10093 ax-pre-mulgt0 10094 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1567 df-ex 1786 df-nf 1791 df-sb 1979 df-eu 2543 df-mo 2544 df-clab 2679 df-cleq 2685 df-clel 2688 df-nfc 2823 df-ne 2865 df-nel 2968 df-ral 2987 df-rex 2988 df-reu 2989 df-rmo 2990 df-rab 2991 df-v 3274 df-sbc 3510 df-csb 3608 df-dif 3651 df-un 3653 df-in 3655 df-ss 3662 df-pss 3664 df-nul 3992 df-if 4163 df-pw 4236 df-sn 4254 df-pr 4256 df-tp 4258 df-op 4260 df-uni 4513 df-int 4552 df-iun 4598 df-br 4729 df-opab 4789 df-mpt 4806 df-tr 4829 df-id 5096 df-eprel 5101 df-po 5107 df-so 5108 df-fr 5145 df-se 5146 df-we 5147 df-xp 5192 df-rel 5193 df-cnv 5194 df-co 5195 df-dm 5196 df-rn 5197 df-res 5198 df-ima 5199 df-pred 5761 df-ord 5807 df-on 5808 df-lim 5809 df-suc 5810 df-iota 5932 df-fun 5971 df-fn 5972 df-f 5973 df-f1 5974 df-fo 5975 df-f1o 5976 df-fv 5977 df-isom 5978 df-riota 6694 df-ov 6736 df-oprab 6737 df-mpt2 6738 df-om 7151 df-1st 7253 df-2nd 7254 df-supp 7384 df-wrecs 7495 df-recs 7556 df-rdg 7594 df-1o 7648 df-oadd 7652 df-er 7830 df-map 7944 df-en 8041 df-dom 8042 df-sdom 8043 df-fin 8044 df-oi 8499 df-card 8846 df-pnf 10157 df-mnf 10158 df-xr 10159 df-ltxr 10160 df-le 10161 df-sub 10349 df-neg 10350 df-nn 11102 df-n0 11374 df-z 11459 df-uz 11769 df-fz 12409 df-fzo 12549 df-seq 12885 df-hash 13201 df-0g 16193 df-gsum 16194 df-mgm 17332 df-sgrp 17374 df-mnd 17385 df-grp 17515 df-mulg 17631 df-cntz 17839 df-lmod 18956 df-linc 42590 |
This theorem is referenced by: snlindsntor 42655 |
Copyright terms: Public domain | W3C validator |