Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snmlff Structured version   Visualization version   GIF version

Theorem snmlff 32578
Description: The function 𝐹 from snmlval 32580 is a mapping from positive integers to real numbers in the range [0, 1]. (Contributed by Mario Carneiro, 6-Apr-2015.)
Hypothesis
Ref Expression
snmlff.f 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
Assertion
Ref Expression
snmlff 𝐹:ℕ⟶(0[,]1)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑘,𝑛   𝑅,𝑛
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑅(𝑘)   𝐹(𝑘,𝑛)

Proof of Theorem snmlff
StepHypRef Expression
1 snmlff.f . 2 𝐹 = (𝑛 ∈ ℕ ↦ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
2 fzfid 13344 . . . . . . 7 (𝑛 ∈ ℕ → (1...𝑛) ∈ Fin)
3 ssrab2 4058 . . . . . . 7 {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)
4 ssfi 8740 . . . . . . 7 (((1...𝑛) ∈ Fin ∧ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛)) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
52, 3, 4sylancl 588 . . . . . 6 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin)
6 hashcl 13720 . . . . . 6 ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
75, 6syl 17 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℕ0)
87nn0red 11959 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ)
9 nndivre 11681 . . . 4 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 𝑛 ∈ ℕ) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
108, 9mpancom 686 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ)
117nn0ge0d 11961 . . . 4 (𝑛 ∈ ℕ → 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}))
12 nnre 11647 . . . 4 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
13 nngt0 11671 . . . 4 (𝑛 ∈ ℕ → 0 < 𝑛)
14 divge0 11511 . . . 4 ((((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 0 ≤ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵})) ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
158, 11, 12, 13, 14syl22anc 836 . . 3 (𝑛 ∈ ℕ → 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛))
16 ssdomg 8557 . . . . . . . 8 ((1...𝑛) ∈ Fin → ({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ⊆ (1...𝑛) → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
172, 3, 16mpisyl 21 . . . . . . 7 (𝑛 ∈ ℕ → {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛))
18 hashdom 13743 . . . . . . . 8 (({𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ∈ Fin ∧ (1...𝑛) ∈ Fin) → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
195, 2, 18syl2anc 586 . . . . . . 7 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)) ↔ {𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵} ≼ (1...𝑛)))
2017, 19mpbird 259 . . . . . 6 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (♯‘(1...𝑛)))
21 nnnn0 11907 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
22 hashfz1 13709 . . . . . . 7 (𝑛 ∈ ℕ0 → (♯‘(1...𝑛)) = 𝑛)
2321, 22syl 17 . . . . . 6 (𝑛 ∈ ℕ → (♯‘(1...𝑛)) = 𝑛)
2420, 23breqtrd 5094 . . . . 5 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ 𝑛)
25 nncn 11648 . . . . . 6 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
2625mulid1d 10660 . . . . 5 (𝑛 ∈ ℕ → (𝑛 · 1) = 𝑛)
2724, 26breqtrrd 5096 . . . 4 (𝑛 ∈ ℕ → (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1))
28 1red 10644 . . . . 5 (𝑛 ∈ ℕ → 1 ∈ ℝ)
29 ledivmul 11518 . . . . 5 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑛 ∈ ℝ ∧ 0 < 𝑛)) → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
308, 28, 12, 13, 29syl112anc 1370 . . . 4 (𝑛 ∈ ℕ → (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1 ↔ (♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) ≤ (𝑛 · 1)))
3127, 30mpbird 259 . . 3 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1)
32 elicc01 12857 . . 3 (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1) ↔ (((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ ℝ ∧ 0 ≤ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∧ ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ≤ 1))
3310, 15, 31, 32syl3anbrc 1339 . 2 (𝑛 ∈ ℕ → ((♯‘{𝑘 ∈ (1...𝑛) ∣ (⌊‘((𝐴 · (𝑅𝑘)) mod 𝑅)) = 𝐵}) / 𝑛) ∈ (0[,]1))
341, 33fmpti 6878 1 𝐹:ℕ⟶(0[,]1)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  wcel 2114  {crab 3144  wss 3938   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cdom 8509  Fincfn 8511  cr 10538  0cc0 10539  1c1 10540   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  cn 11640  0cn0 11900  [,]cicc 12744  ...cfz 12895  cfl 13163   mod cmo 13240  cexp 13432  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-icc 12748  df-fz 12896  df-hash 13694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator