![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALTVD | Structured version Visualization version GIF version |
Description: Virtual deduction proof of snssiALT 39377. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snssiALTVD | ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3624 | . . 3 ⊢ ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) | |
2 | idn1 39107 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) | |
3 | idn2 39155 | . . . . . . 7 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 ∈ {𝐴} ) | |
4 | velsn 4226 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
5 | 3, 4 | e2bi 39174 | . . . . . 6 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 = 𝐴 ) |
6 | eleq1a 2725 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | |
7 | 2, 5, 6 | e12 39268 | . . . . 5 ⊢ ( 𝐴 ∈ 𝐵 , 𝑥 ∈ {𝐴} ▶ 𝑥 ∈ 𝐵 ) |
8 | 7 | in2 39147 | . . . 4 ⊢ ( 𝐴 ∈ 𝐵 ▶ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ) |
9 | 8 | gen11 39158 | . . 3 ⊢ ( 𝐴 ∈ 𝐵 ▶ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) ) |
10 | biimpr 210 | . . 3 ⊢ (({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵)) → (∀𝑥(𝑥 ∈ {𝐴} → 𝑥 ∈ 𝐵) → {𝐴} ⊆ 𝐵)) | |
11 | 1, 9, 10 | e01 39233 | . 2 ⊢ ( 𝐴 ∈ 𝐵 ▶ {𝐴} ⊆ 𝐵 ) |
12 | 11 | in1 39104 | 1 ⊢ (𝐴 ∈ 𝐵 → {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 = wceq 1523 ∈ wcel 2030 ⊆ wss 3607 {csn 4210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 df-sn 4211 df-vd1 39103 df-vd2 39111 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |