Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snssiALTVD Structured version   Visualization version   GIF version

Theorem snssiALTVD 39376
Description: Virtual deduction proof of snssiALT 39377. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snssiALTVD (𝐴𝐵 → {𝐴} ⊆ 𝐵)

Proof of Theorem snssiALTVD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3624 . . 3 ({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵))
2 idn1 39107 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
3 idn2 39155 . . . . . . 7 (   𝐴𝐵   ,   𝑥 ∈ {𝐴}   ▶   𝑥 ∈ {𝐴}   )
4 velsn 4226 . . . . . . 7 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
53, 4e2bi 39174 . . . . . 6 (   𝐴𝐵   ,   𝑥 ∈ {𝐴}   ▶   𝑥 = 𝐴   )
6 eleq1a 2725 . . . . . 6 (𝐴𝐵 → (𝑥 = 𝐴𝑥𝐵))
72, 5, 6e12 39268 . . . . 5 (   𝐴𝐵   ,   𝑥 ∈ {𝐴}   ▶   𝑥𝐵   )
87in2 39147 . . . 4 (   𝐴𝐵   ▶   (𝑥 ∈ {𝐴} → 𝑥𝐵)   )
98gen11 39158 . . 3 (   𝐴𝐵   ▶   𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵)   )
10 biimpr 210 . . 3 (({𝐴} ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵)) → (∀𝑥(𝑥 ∈ {𝐴} → 𝑥𝐵) → {𝐴} ⊆ 𝐵))
111, 9, 10e01 39233 . 2 (   𝐴𝐵   ▶   {𝐴} ⊆ 𝐵   )
1211in1 39104 1 (𝐴𝐵 → {𝐴} ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1521   = wceq 1523  wcel 2030  wss 3607  {csn 4210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-in 3614  df-ss 3621  df-sn 4211  df-vd1 39103  df-vd2 39111
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator