MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snstriedgval Structured version   Visualization version   GIF version

Theorem snstriedgval 26825
Description: The set of indexed edges of a graph without edges represented as an extensible structure with vertices as base set and no indexed edges. See iedgvalsnop 26829 for the (degenerate) case where 𝑉 = (Base‘ndx). (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
snstrvtxval.v 𝑉 ∈ V
snstrvtxval.g 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
Assertion
Ref Expression
snstriedgval (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)

Proof of Theorem snstriedgval
StepHypRef Expression
1 iedgval 26788 . . 3 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
21a1i 11 . 2 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
3 necom 3071 . . . 4 (𝑉 ≠ (Base‘ndx) ↔ (Base‘ndx) ≠ 𝑉)
4 fvex 6685 . . . . 5 (Base‘ndx) ∈ V
5 snstrvtxval.v . . . . 5 𝑉 ∈ V
6 snstrvtxval.g . . . . 5 𝐺 = {⟨(Base‘ndx), 𝑉⟩}
74, 5, 6funsndifnop 6915 . . . 4 ((Base‘ndx) ≠ 𝑉 → ¬ 𝐺 ∈ (V × V))
83, 7sylbi 219 . . 3 (𝑉 ≠ (Base‘ndx) → ¬ 𝐺 ∈ (V × V))
98iffalsed 4480 . 2 (𝑉 ≠ (Base‘ndx) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
10 snex 5334 . . . . . 6 {⟨(Base‘ndx), 𝑉⟩} ∈ V
1110a1i 11 . . . . 5 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → {⟨(Base‘ndx), 𝑉⟩} ∈ V)
126, 11eqeltrid 2919 . . . 4 (𝐺 = {⟨(Base‘ndx), 𝑉⟩} → 𝐺 ∈ V)
13 edgfndxid 26780 . . . 4 (𝐺 ∈ V → (.ef‘𝐺) = (𝐺‘(.ef‘ndx)))
146, 12, 13mp2b 10 . . 3 (.ef‘𝐺) = (𝐺‘(.ef‘ndx))
15 slotsbaseefdif 26782 . . . . . . . 8 (Base‘ndx) ≠ (.ef‘ndx)
1615nesymi 3075 . . . . . . 7 ¬ (.ef‘ndx) = (Base‘ndx)
1716a1i 11 . . . . . 6 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) = (Base‘ndx))
18 fvex 6685 . . . . . . 7 (.ef‘ndx) ∈ V
1918elsn 4584 . . . . . 6 ((.ef‘ndx) ∈ {(Base‘ndx)} ↔ (.ef‘ndx) = (Base‘ndx))
2017, 19sylnibr 331 . . . . 5 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ {(Base‘ndx)})
216dmeqi 5775 . . . . . 6 dom 𝐺 = dom {⟨(Base‘ndx), 𝑉⟩}
22 dmsnopg 6072 . . . . . . 7 (𝑉 ∈ V → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
235, 22mp1i 13 . . . . . 6 (𝑉 ≠ (Base‘ndx) → dom {⟨(Base‘ndx), 𝑉⟩} = {(Base‘ndx)})
2421, 23syl5eq 2870 . . . . 5 (𝑉 ≠ (Base‘ndx) → dom 𝐺 = {(Base‘ndx)})
2520, 24neleqtrrd 2937 . . . 4 (𝑉 ≠ (Base‘ndx) → ¬ (.ef‘ndx) ∈ dom 𝐺)
26 ndmfv 6702 . . . 4 (¬ (.ef‘ndx) ∈ dom 𝐺 → (𝐺‘(.ef‘ndx)) = ∅)
2725, 26syl 17 . . 3 (𝑉 ≠ (Base‘ndx) → (𝐺‘(.ef‘ndx)) = ∅)
2814, 27syl5eq 2870 . 2 (𝑉 ≠ (Base‘ndx) → (.ef‘𝐺) = ∅)
292, 9, 283eqtrd 2862 1 (𝑉 ≠ (Base‘ndx) → (iEdg‘𝐺) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  c0 4293  ifcif 4469  {csn 4569  cop 4575   × cxp 5555  dom cdm 5557  cfv 6357  2nd c2nd 7690  ndxcnx 16482  Basecbs 16485  .efcedgf 26776  iEdgciedg 26784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-edgf 26777  df-iedg 26786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator