MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  soisores Structured version   Visualization version   GIF version

Theorem soisores 7082
Description: Express the condition of isomorphism on two strict orders for a function's restriction. (Contributed by Mario Carneiro, 22-Jan-2015.)
Assertion
Ref Expression
soisores (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem soisores
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isorel 7081 . . . . 5 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦)))
2 fvres 6691 . . . . . . 7 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
3 fvres 6691 . . . . . . 7 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
42, 3breqan12d 5084 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
54adantl 484 . . . . 5 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
61, 5bitrd 281 . . . 4 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
76biimpd 231 . . 3 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
87ralrimivva 3193 . 2 ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
9 ffn 6516 . . . . . . . 8 (𝐹:𝐵𝐶𝐹 Fn 𝐵)
109ad2antrl 726 . . . . . . 7 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → 𝐹 Fn 𝐵)
11 simprr 771 . . . . . . 7 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → 𝐴𝐵)
12 fnssres 6472 . . . . . . 7 ((𝐹 Fn 𝐵𝐴𝐵) → (𝐹𝐴) Fn 𝐴)
1310, 11, 12syl2anc 586 . . . . . 6 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → (𝐹𝐴) Fn 𝐴)
14133adant3 1128 . . . . 5 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → (𝐹𝐴) Fn 𝐴)
15 df-ima 5570 . . . . . . 7 (𝐹𝐴) = ran (𝐹𝐴)
1615eqcomi 2832 . . . . . 6 ran (𝐹𝐴) = (𝐹𝐴)
1716a1i 11 . . . . 5 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → ran (𝐹𝐴) = (𝐹𝐴))
18 fvres 6691 . . . . . . . . 9 (𝑧𝐴 → ((𝐹𝐴)‘𝑧) = (𝐹𝑧))
19 fvres 6691 . . . . . . . . 9 (𝑤𝐴 → ((𝐹𝐴)‘𝑤) = (𝐹𝑤))
2018, 19eqeqan12d 2840 . . . . . . . 8 ((𝑧𝐴𝑤𝐴) → (((𝐹𝐴)‘𝑧) = ((𝐹𝐴)‘𝑤) ↔ (𝐹𝑧) = (𝐹𝑤)))
2120adantl 484 . . . . . . 7 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (((𝐹𝐴)‘𝑧) = ((𝐹𝐴)‘𝑤) ↔ (𝐹𝑧) = (𝐹𝑤)))
22 simprl 769 . . . . . . . . . . 11 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝑧𝐴)
23 simprr 771 . . . . . . . . . . 11 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝑤𝐴)
24 simpl3 1189 . . . . . . . . . . 11 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
25 breq1 5071 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
26 fveq2 6672 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
2726breq1d 5078 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝐹𝑥)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑦)))
2825, 27imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)) ↔ (𝑧𝑅𝑦 → (𝐹𝑧)𝑆(𝐹𝑦))))
29 breq2 5072 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
30 fveq2 6672 . . . . . . . . . . . . . 14 (𝑦 = 𝑤 → (𝐹𝑦) = (𝐹𝑤))
3130breq2d 5080 . . . . . . . . . . . . 13 (𝑦 = 𝑤 → ((𝐹𝑧)𝑆(𝐹𝑦) ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
3229, 31imbi12d 347 . . . . . . . . . . . 12 (𝑦 = 𝑤 → ((𝑧𝑅𝑦 → (𝐹𝑧)𝑆(𝐹𝑦)) ↔ (𝑧𝑅𝑤 → (𝐹𝑧)𝑆(𝐹𝑤))))
3328, 32rspc2va 3636 . . . . . . . . . . 11 (((𝑧𝐴𝑤𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → (𝑧𝑅𝑤 → (𝐹𝑧)𝑆(𝐹𝑤)))
3422, 23, 24, 33syl21anc 835 . . . . . . . . . 10 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑧𝑅𝑤 → (𝐹𝑧)𝑆(𝐹𝑤)))
35 breq1 5071 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → (𝑥𝑅𝑦𝑤𝑅𝑦))
36 fveq2 6672 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝐹𝑥) = (𝐹𝑤))
3736breq1d 5078 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((𝐹𝑥)𝑆(𝐹𝑦) ↔ (𝐹𝑤)𝑆(𝐹𝑦)))
3835, 37imbi12d 347 . . . . . . . . . . . 12 (𝑥 = 𝑤 → ((𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)) ↔ (𝑤𝑅𝑦 → (𝐹𝑤)𝑆(𝐹𝑦))))
39 breq2 5072 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑤𝑅𝑦𝑤𝑅𝑧))
40 fveq2 6672 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝐹𝑦) = (𝐹𝑧))
4140breq2d 5080 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → ((𝐹𝑤)𝑆(𝐹𝑦) ↔ (𝐹𝑤)𝑆(𝐹𝑧)))
4239, 41imbi12d 347 . . . . . . . . . . . 12 (𝑦 = 𝑧 → ((𝑤𝑅𝑦 → (𝐹𝑤)𝑆(𝐹𝑦)) ↔ (𝑤𝑅𝑧 → (𝐹𝑤)𝑆(𝐹𝑧))))
4338, 42rspc2va 3636 . . . . . . . . . . 11 (((𝑤𝐴𝑧𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → (𝑤𝑅𝑧 → (𝐹𝑤)𝑆(𝐹𝑧)))
4423, 22, 24, 43syl21anc 835 . . . . . . . . . 10 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑤𝑅𝑧 → (𝐹𝑤)𝑆(𝐹𝑧)))
4534, 44orim12d 961 . . . . . . . . 9 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ((𝑧𝑅𝑤𝑤𝑅𝑧) → ((𝐹𝑧)𝑆(𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧))))
4645con3d 155 . . . . . . . 8 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (¬ ((𝐹𝑧)𝑆(𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧)) → ¬ (𝑧𝑅𝑤𝑤𝑅𝑧)))
47 simpl1r 1221 . . . . . . . . 9 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝑆 Or 𝐶)
48 simpl2l 1222 . . . . . . . . . 10 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝐹:𝐵𝐶)
49 simpl2r 1223 . . . . . . . . . . 11 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝐴𝐵)
5049, 22sseldd 3970 . . . . . . . . . 10 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝑧𝐵)
5148, 50ffvelrnd 6854 . . . . . . . . 9 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝐹𝑧) ∈ 𝐶)
5249, 23sseldd 3970 . . . . . . . . . 10 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝑤𝐵)
5348, 52ffvelrnd 6854 . . . . . . . . 9 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝐹𝑤) ∈ 𝐶)
54 sotrieq 5504 . . . . . . . . 9 ((𝑆 Or 𝐶 ∧ ((𝐹𝑧) ∈ 𝐶 ∧ (𝐹𝑤) ∈ 𝐶)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ¬ ((𝐹𝑧)𝑆(𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧))))
5547, 51, 53, 54syl12anc 834 . . . . . . . 8 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ((𝐹𝑧) = (𝐹𝑤) ↔ ¬ ((𝐹𝑧)𝑆(𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧))))
56 simpl1l 1220 . . . . . . . . 9 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → 𝑅 Or 𝐵)
57 sotrieq 5504 . . . . . . . . 9 ((𝑅 Or 𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧 = 𝑤 ↔ ¬ (𝑧𝑅𝑤𝑤𝑅𝑧)))
5856, 50, 52, 57syl12anc 834 . . . . . . . 8 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑧 = 𝑤 ↔ ¬ (𝑧𝑅𝑤𝑤𝑅𝑧)))
5946, 55, 583imtr4d 296 . . . . . . 7 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
6021, 59sylbid 242 . . . . . 6 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (((𝐹𝐴)‘𝑧) = ((𝐹𝐴)‘𝑤) → 𝑧 = 𝑤))
6160ralrimivva 3193 . . . . 5 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → ∀𝑧𝐴𝑤𝐴 (((𝐹𝐴)‘𝑧) = ((𝐹𝐴)‘𝑤) → 𝑧 = 𝑤))
62 dff1o6 7034 . . . . 5 ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) = (𝐹𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (((𝐹𝐴)‘𝑧) = ((𝐹𝐴)‘𝑤) → 𝑧 = 𝑤)))
6314, 17, 61, 62syl3anbrc 1339 . . . 4 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → (𝐹𝐴):𝐴1-1-onto→(𝐹𝐴))
64 fveq2 6672 . . . . . . . . . . 11 (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤))
6564a1i 11 . . . . . . . . . 10 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑧 = 𝑤 → (𝐹𝑧) = (𝐹𝑤)))
6665, 44orim12d 961 . . . . . . . . 9 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ((𝑧 = 𝑤𝑤𝑅𝑧) → ((𝐹𝑧) = (𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧))))
6766con3d 155 . . . . . . . 8 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (¬ ((𝐹𝑧) = (𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧)) → ¬ (𝑧 = 𝑤𝑤𝑅𝑧)))
68 sotric 5503 . . . . . . . . 9 ((𝑆 Or 𝐶 ∧ ((𝐹𝑧) ∈ 𝐶 ∧ (𝐹𝑤) ∈ 𝐶)) → ((𝐹𝑧)𝑆(𝐹𝑤) ↔ ¬ ((𝐹𝑧) = (𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧))))
6947, 51, 53, 68syl12anc 834 . . . . . . . 8 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ((𝐹𝑧)𝑆(𝐹𝑤) ↔ ¬ ((𝐹𝑧) = (𝐹𝑤) ∨ (𝐹𝑤)𝑆(𝐹𝑧))))
70 sotric 5503 . . . . . . . . 9 ((𝑅 Or 𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧𝑅𝑤 ↔ ¬ (𝑧 = 𝑤𝑤𝑅𝑧)))
7156, 50, 52, 70syl12anc 834 . . . . . . . 8 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑧𝑅𝑤 ↔ ¬ (𝑧 = 𝑤𝑤𝑅𝑧)))
7267, 69, 713imtr4d 296 . . . . . . 7 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → ((𝐹𝑧)𝑆(𝐹𝑤) → 𝑧𝑅𝑤))
7334, 72impbid 214 . . . . . 6 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑧𝑅𝑤 ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
7418, 19breqan12d 5084 . . . . . . 7 ((𝑧𝐴𝑤𝐴) → (((𝐹𝐴)‘𝑧)𝑆((𝐹𝐴)‘𝑤) ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
7574adantl 484 . . . . . 6 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (((𝐹𝐴)‘𝑧)𝑆((𝐹𝐴)‘𝑤) ↔ (𝐹𝑧)𝑆(𝐹𝑤)))
7673, 75bitr4d 284 . . . . 5 ((((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) ∧ (𝑧𝐴𝑤𝐴)) → (𝑧𝑅𝑤 ↔ ((𝐹𝐴)‘𝑧)𝑆((𝐹𝐴)‘𝑤)))
7776ralrimivva 3193 . . . 4 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ ((𝐹𝐴)‘𝑧)𝑆((𝐹𝐴)‘𝑤)))
78 df-isom 6366 . . . 4 ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ↔ ((𝐹𝐴):𝐴1-1-onto→(𝐹𝐴) ∧ ∀𝑧𝐴𝑤𝐴 (𝑧𝑅𝑤 ↔ ((𝐹𝐴)‘𝑧)𝑆((𝐹𝐴)‘𝑤))))
7963, 77, 78sylanbrc 585 . . 3 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))) → (𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)))
80793expia 1117 . 2 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)) → (𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴))))
818, 80impbid2 228 1 (((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wss 3938   class class class wbr 5068   Or wor 5475  ran crn 5558  cres 5559  cima 5560   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357   Isom wiso 6358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366
This theorem is referenced by:  isercolllem1  15023  dvgt0lem2  24602  erdszelem4  32443  erdszelem8  32447  erdsze2lem2  32453
  Copyright terms: Public domain W3C validator