MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotri2 Structured version   Visualization version   GIF version

Theorem sotri2 5560
Description: A transitivity relation. (Read 𝐴𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem sotri2
StepHypRef Expression
1 soi.2 . . . . 5 𝑅 ⊆ (𝑆 × 𝑆)
21brel 5202 . . . 4 (𝐵𝑅𝐶 → (𝐵𝑆𝐶𝑆))
32simpld 474 . . 3 (𝐵𝑅𝐶𝐵𝑆)
4 soi.1 . . . . . . 7 𝑅 Or 𝑆
5 sotric 5090 . . . . . . 7 ((𝑅 Or 𝑆 ∧ (𝐵𝑆𝐴𝑆)) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴𝐴𝑅𝐵)))
64, 5mpan 706 . . . . . 6 ((𝐵𝑆𝐴𝑆) → (𝐵𝑅𝐴 ↔ ¬ (𝐵 = 𝐴𝐴𝑅𝐵)))
76con2bid 343 . . . . 5 ((𝐵𝑆𝐴𝑆) → ((𝐵 = 𝐴𝐴𝑅𝐵) ↔ ¬ 𝐵𝑅𝐴))
8 breq1 4688 . . . . . . 7 (𝐵 = 𝐴 → (𝐵𝑅𝐶𝐴𝑅𝐶))
98biimpd 219 . . . . . 6 (𝐵 = 𝐴 → (𝐵𝑅𝐶𝐴𝑅𝐶))
104, 1sotri 5558 . . . . . . 7 ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
1110ex 449 . . . . . 6 (𝐴𝑅𝐵 → (𝐵𝑅𝐶𝐴𝑅𝐶))
129, 11jaoi 393 . . . . 5 ((𝐵 = 𝐴𝐴𝑅𝐵) → (𝐵𝑅𝐶𝐴𝑅𝐶))
137, 12syl6bir 244 . . . 4 ((𝐵𝑆𝐴𝑆) → (¬ 𝐵𝑅𝐴 → (𝐵𝑅𝐶𝐴𝑅𝐶)))
1413com3r 87 . . 3 (𝐵𝑅𝐶 → ((𝐵𝑆𝐴𝑆) → (¬ 𝐵𝑅𝐴𝐴𝑅𝐶)))
153, 14mpand 711 . 2 (𝐵𝑅𝐶 → (𝐴𝑆 → (¬ 𝐵𝑅𝐴𝐴𝑅𝐶)))
16153imp231 1277 1 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wss 3607   class class class wbr 4685   Or wor 5063   × cxp 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-po 5064  df-so 5065  df-xp 5149
This theorem is referenced by:  supsrlem  9970
  Copyright terms: Public domain W3C validator