HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanunsni Structured version   Visualization version   GIF version

Theorem spanunsni 28326
Description: The span of the union of a closed subspace with a singleton equals the span of its union with an orthogonal singleton. (Contributed by NM, 3-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanunsn.1 𝐴C
spanunsn.2 𝐵 ∈ ℋ
Assertion
Ref Expression
spanunsni (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))

Proof of Theorem spanunsni
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanunsn.1 . . . . . . 7 𝐴C
21chshii 27972 . . . . . 6 𝐴S
3 spanunsn.2 . . . . . . 7 𝐵 ∈ ℋ
4 snssi 4315 . . . . . . 7 (𝐵 ∈ ℋ → {𝐵} ⊆ ℋ)
5 spancl 28083 . . . . . . 7 ({𝐵} ⊆ ℋ → (span‘{𝐵}) ∈ S )
63, 4, 5mp2b 10 . . . . . 6 (span‘{𝐵}) ∈ S
72, 6shseli 28063 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧))
83elspansni 28305 . . . . . . . 8 (𝑧 ∈ (span‘{𝐵}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵))
91, 3pjclii 28168 . . . . . . . . . . . . . . . 16 ((proj𝐴)‘𝐵) ∈ 𝐴
10 shmulcl 27963 . . . . . . . . . . . . . . . 16 ((𝐴S𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
112, 9, 10mp3an13 1412 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
12 shaddcl 27962 . . . . . . . . . . . . . . 15 ((𝐴S𝑦𝐴 ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
1311, 12syl3an3 1358 . . . . . . . . . . . . . 14 ((𝐴S𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
142, 13mp3an1 1408 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴)
151choccli 28054 . . . . . . . . . . . . . . . 16 (⊥‘𝐴) ∈ C
1615, 3pjhclii 28169 . . . . . . . . . . . . . . 15 ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ
17 spansnmul 28311 . . . . . . . . . . . . . . 15 ((((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1816, 17mpan 705 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1918adantl 482 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
201, 3pjpji 28171 . . . . . . . . . . . . . . . . . 18 𝐵 = (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))
2120oveq2i 6626 . . . . . . . . . . . . . . . . 17 (𝑤 · 𝐵) = (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵)))
221, 3pjhclii 28169 . . . . . . . . . . . . . . . . . 18 ((proj𝐴)‘𝐵) ∈ ℋ
23 ax-hvdistr1 27753 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2422, 16, 23mp3an23 1413 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → (𝑤 · (((proj𝐴)‘𝐵) + ((proj‘(⊥‘𝐴))‘𝐵))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2521, 24syl5eq 2667 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2625adantl 482 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) = ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
2726oveq2d 6631 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
281cheli 27977 . . . . . . . . . . . . . . 15 (𝑦𝐴𝑦 ∈ ℋ)
29 hvmulcl 27758 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
3022, 29mpan2 706 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
31 hvmulcl 27758 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ ℂ ∧ ((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ) → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3216, 31mpan2 706 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)
3330, 32jca 554 . . . . . . . . . . . . . . 15 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
34 ax-hvass 27747 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
35343expb 1263 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℋ ∧ ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3628, 33, 35syl2an 494 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑦 + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
3727, 36eqtr4d 2658 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
38 rspceov 6657 . . . . . . . . . . . . 13 (((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) ∈ 𝐴 ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∧ (𝑦 + (𝑤 · 𝐵)) = ((𝑦 + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
3914, 19, 37, 38syl3anc 1323 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
40 snssi 4315 . . . . . . . . . . . . . 14 (((proj‘(⊥‘𝐴))‘𝐵) ∈ ℋ → {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ)
41 spancl 28083 . . . . . . . . . . . . . 14 ({((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ → (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S )
4216, 40, 41mp2b 10 . . . . . . . . . . . . 13 (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ∈ S
432, 42shseli 28063 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})(𝑦 + (𝑤 · 𝐵)) = (𝑣 + 𝑢))
4439, 43sylibr 224 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
45 oveq2 6623 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · 𝐵) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · 𝐵)))
4645eqeq2d 2631 . . . . . . . . . . . 12 (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · 𝐵))))
4746biimpa 501 . . . . . . . . . . 11 ((𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · 𝐵)))
48 eleq1 2686 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · 𝐵)) → (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ (𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
4948biimparc 504 . . . . . . . . . . 11 (((𝑦 + (𝑤 · 𝐵)) ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ∧ 𝑥 = (𝑦 + (𝑤 · 𝐵))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5044, 47, 49syl2an 494 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · 𝐵) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
5150exp43 639 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))))
5251rexlimdv 3025 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · 𝐵) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
538, 52syl5bi 232 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{𝐵}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))))
5453rexlimdv 3025 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))))
5554rexlimiv 3022 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{𝐵})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
567, 55sylbi 207 . . . 4 (𝑥 ∈ (𝐴 + (span‘{𝐵})) → 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
572, 42shseli 28063 . . . . 5 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) ↔ ∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧))
5816elspansni 28305 . . . . . . . 8 (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) ↔ ∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))
59 negcl 10241 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → -𝑤 ∈ ℂ)
60 shmulcl 27963 . . . . . . . . . . . . . . . . . 18 ((𝐴S ∧ -𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ 𝐴) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
612, 9, 60mp3an13 1412 . . . . . . . . . . . . . . . . 17 (-𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴)
63 shaddcl 27962 . . . . . . . . . . . . . . . 16 ((𝐴S ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ 𝐴𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6462, 63syl3an2 1357 . . . . . . . . . . . . . . 15 ((𝐴S𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
652, 64mp3an1 1408 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℂ ∧ 𝑦𝐴) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
6665ancoms 469 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴)
67 spansnmul 28311 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℋ ∧ 𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
683, 67mpan 705 . . . . . . . . . . . . . 14 (𝑤 ∈ ℂ → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
6968adantl 482 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑤 · 𝐵) ∈ (span‘{𝐵}))
70 hvm1neg 27777 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7122, 70mpan2 706 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-1 · (𝑤 · ((proj𝐴)‘𝐵))) = (-𝑤 · ((proj𝐴)‘𝐵)))
7271oveq2d 6631 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))))
73 hvnegid 27772 . . . . . . . . . . . . . . . . . . 19 ((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
7430, 73syl 17 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-1 · (𝑤 · ((proj𝐴)‘𝐵)))) = 0)
75 hvmulcl 27758 . . . . . . . . . . . . . . . . . . . 20 ((-𝑤 ∈ ℂ ∧ ((proj𝐴)‘𝐵) ∈ ℋ) → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
7659, 22, 75sylancl 693 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ℂ → (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ)
77 ax-hvcom 27746 . . . . . . . . . . . . . . . . . . 19 (((𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7830, 76, 77syl2anc 692 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ℂ → ((𝑤 · ((proj𝐴)‘𝐵)) + (-𝑤 · ((proj𝐴)‘𝐵))) = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
7972, 74, 783eqtr3d 2663 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8079adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → 0 = ((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))))
8180oveq1d 6630 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
82 hvaddcl 27757 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
8328, 32, 82syl2an 494 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ)
84 hvaddid2 27768 . . . . . . . . . . . . . . . 16 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ ℋ → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8583, 84syl 17 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (0 + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
8676, 30jca 554 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ℂ → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8786adantl 482 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → ((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ))
8828, 32anim12i 589 . . . . . . . . . . . . . . . 16 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ))
89 hvadd4 27781 . . . . . . . . . . . . . . . 16 ((((-𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ ∧ (𝑤 · ((proj𝐴)‘𝐵)) ∈ ℋ) ∧ (𝑦 ∈ ℋ ∧ (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∈ ℋ)) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9087, 88, 89syl2anc 692 . . . . . . . . . . . . . . 15 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj𝐴)‘𝐵))) + (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9181, 85, 903eqtr3d 2663 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9226oveq2d 6631 . . . . . . . . . . . . . 14 ((𝑦𝐴𝑤 ∈ ℂ) → (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + ((𝑤 · ((proj𝐴)‘𝐵)) + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
9391, 92eqtr4d 2658 . . . . . . . . . . . . 13 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵)))
94 rspceov 6657 . . . . . . . . . . . . 13 ((((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) ∈ 𝐴 ∧ (𝑤 · 𝐵) ∈ (span‘{𝐵}) ∧ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (((-𝑤 · ((proj𝐴)‘𝐵)) + 𝑦) + (𝑤 · 𝐵))) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9566, 69, 93, 94syl3anc 1323 . . . . . . . . . . . 12 ((𝑦𝐴𝑤 ∈ ℂ) → ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
962, 6shseli 28063 . . . . . . . . . . . 12 ((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ↔ ∃𝑣𝐴𝑢 ∈ (span‘{𝐵})(𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) = (𝑣 + 𝑢))
9795, 96sylibr 224 . . . . . . . . . . 11 ((𝑦𝐴𝑤 ∈ ℂ) → (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})))
98 oveq2 6623 . . . . . . . . . . . . 13 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑦 + 𝑧) = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
9998eqeq2d 2631 . . . . . . . . . . . 12 (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) ↔ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))))
10099biimpa 501 . . . . . . . . . . 11 ((𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧)) → 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))))
101 eleq1 2686 . . . . . . . . . . . 12 (𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) → (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵}))))
102101biimparc 504 . . . . . . . . . . 11 (((𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵))) ∈ (𝐴 + (span‘{𝐵})) ∧ 𝑥 = (𝑦 + (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10397, 100, 102syl2an 494 . . . . . . . . . 10 (((𝑦𝐴𝑤 ∈ ℂ) ∧ (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) ∧ 𝑥 = (𝑦 + 𝑧))) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
104103exp43 639 . . . . . . . . 9 (𝑦𝐴 → (𝑤 ∈ ℂ → (𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))))
105104rexlimdv 3025 . . . . . . . 8 (𝑦𝐴 → (∃𝑤 ∈ ℂ 𝑧 = (𝑤 · ((proj‘(⊥‘𝐴))‘𝐵)) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
10658, 105syl5bi 232 . . . . . . 7 (𝑦𝐴 → (𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)}) → (𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))))
107106rexlimdv 3025 . . . . . 6 (𝑦𝐴 → (∃𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵}))))
108107rexlimiv 3022 . . . . 5 (∃𝑦𝐴𝑧 ∈ (span‘{((proj‘(⊥‘𝐴))‘𝐵)})𝑥 = (𝑦 + 𝑧) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
10957, 108sylbi 207 . . . 4 (𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) → 𝑥 ∈ (𝐴 + (span‘{𝐵})))
11056, 109impbii 199 . . 3 (𝑥 ∈ (𝐴 + (span‘{𝐵})) ↔ 𝑥 ∈ (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})))
111110eqriv 2618 . 2 (𝐴 + (span‘{𝐵})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
1121chssii 27976 . . . 4 𝐴 ⊆ ℋ
1133, 4ax-mp 5 . . . 4 {𝐵} ⊆ ℋ
114112, 113spanuni 28291 . . 3 (span‘(𝐴 ∪ {𝐵})) = ((span‘𝐴) + (span‘{𝐵}))
115 spanid 28094 . . . . 5 (𝐴S → (span‘𝐴) = 𝐴)
1162, 115ax-mp 5 . . . 4 (span‘𝐴) = 𝐴
117116oveq1i 6625 . . 3 ((span‘𝐴) + (span‘{𝐵})) = (𝐴 + (span‘{𝐵}))
118114, 117eqtri 2643 . 2 (span‘(𝐴 ∪ {𝐵})) = (𝐴 + (span‘{𝐵}))
11916, 40ax-mp 5 . . . 4 {((proj‘(⊥‘𝐴))‘𝐵)} ⊆ ℋ
120112, 119spanuni 28291 . . 3 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
121116oveq1i 6625 . . 3 ((span‘𝐴) + (span‘{((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
122120, 121eqtri 2643 . 2 (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)})) = (𝐴 + (span‘{((proj‘(⊥‘𝐴))‘𝐵)}))
123111, 118, 1223eqtr4i 2653 1 (span‘(𝐴 ∪ {𝐵})) = (span‘(𝐴 ∪ {((proj‘(⊥‘𝐴))‘𝐵)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2909  cun 3558  wss 3560  {csn 4155  cfv 5857  (class class class)co 6615  cc 9894  1c1 9897  -cneg 10227  chil 27664   + cva 27665   · csm 27666  0c0v 27669   S csh 27673   C cch 27674  cort 27675   + cph 27676  spancspn 27677  projcpjh 27682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cc 9217  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974  ax-addf 9975  ax-mulf 9976  ax-hilex 27744  ax-hfvadd 27745  ax-hvcom 27746  ax-hvass 27747  ax-hv0cl 27748  ax-hvaddid 27749  ax-hfvmul 27750  ax-hvmulid 27751  ax-hvmulass 27752  ax-hvdistr1 27753  ax-hvdistr2 27754  ax-hvmul0 27755  ax-hfi 27824  ax-his1 27827  ax-his2 27828  ax-his3 27829  ax-his4 27830  ax-hcompl 27947
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-omul 7525  df-er 7702  df-map 7819  df-pm 7820  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-fi 8277  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-acn 8728  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-q 11749  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-ioo 12137  df-ico 12139  df-icc 12140  df-fz 12285  df-fzo 12423  df-fl 12549  df-seq 12758  df-exp 12817  df-hash 13074  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-clim 14169  df-rlim 14170  df-sum 14367  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-starv 15896  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-unif 15905  df-hom 15906  df-cco 15907  df-rest 16023  df-topn 16024  df-0g 16042  df-gsum 16043  df-topgen 16044  df-pt 16045  df-prds 16048  df-xrs 16102  df-qtop 16107  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-psmet 19678  df-xmet 19679  df-met 19680  df-bl 19681  df-mopn 19682  df-fbas 19683  df-fg 19684  df-cnfld 19687  df-top 20639  df-topon 20656  df-topsp 20677  df-bases 20690  df-cld 20763  df-ntr 20764  df-cls 20765  df-nei 20842  df-cn 20971  df-cnp 20972  df-lm 20973  df-haus 21059  df-tx 21305  df-hmeo 21498  df-fil 21590  df-fm 21682  df-flim 21683  df-flf 21684  df-xms 22065  df-ms 22066  df-tms 22067  df-cfil 22993  df-cau 22994  df-cmet 22995  df-grpo 27235  df-gid 27236  df-ginv 27237  df-gdiv 27238  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-vs 27342  df-nmcv 27343  df-ims 27344  df-dip 27444  df-ssp 27465  df-ph 27556  df-cbn 27607  df-hnorm 27713  df-hba 27714  df-hvsub 27716  df-hlim 27717  df-hcau 27718  df-sh 27952  df-ch 27966  df-oc 27997  df-ch0 27998  df-shs 28055  df-span 28056  df-pjh 28142
This theorem is referenced by:  spansnji  28393
  Copyright terms: Public domain W3C validator