![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcegf | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.) |
Ref | Expression |
---|---|
spcgf.1 | ⊢ Ⅎ𝑥𝐴 |
spcgf.2 | ⊢ Ⅎ𝑥𝜓 |
spcgf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcegf | ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcgf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | spcgf.2 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | nfn 1824 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
4 | spcgf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 4 | notbid 307 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
6 | 1, 3, 5 | spcgf 3319 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓)) |
7 | 6 | con2d 129 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑)) |
8 | df-ex 1745 | . 2 ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) | |
9 | 7, 8 | syl6ibr 242 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝜓 → ∃𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1521 = wceq 1523 ∃wex 1744 Ⅎwnf 1748 ∈ wcel 2030 Ⅎwnfc 2780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 |
This theorem is referenced by: spcegv 3325 rspce 3335 euotd 5004 bnj607 31112 bnj1491 31251 rspcegf 39496 stoweidlem36 40571 stoweidlem46 40581 |
Copyright terms: Public domain | W3C validator |