Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcegf Structured version   Visualization version   GIF version

Theorem spcegf 3320
 Description: Existential specialization, using implicit substitution. (Contributed by NM, 2-Feb-1997.)
Hypotheses
Ref Expression
spcgf.1 𝑥𝐴
spcgf.2 𝑥𝜓
spcgf.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
spcegf (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))

Proof of Theorem spcegf
StepHypRef Expression
1 spcgf.1 . . . 4 𝑥𝐴
2 spcgf.2 . . . . 5 𝑥𝜓
32nfn 1824 . . . 4 𝑥 ¬ 𝜓
4 spcgf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
54notbid 307 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
61, 3, 5spcgf 3319 . . 3 (𝐴𝑉 → (∀𝑥 ¬ 𝜑 → ¬ 𝜓))
76con2d 129 . 2 (𝐴𝑉 → (𝜓 → ¬ ∀𝑥 ¬ 𝜑))
8 df-ex 1745 . 2 (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
97, 8syl6ibr 242 1 (𝐴𝑉 → (𝜓 → ∃𝑥𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196  ∀wal 1521   = wceq 1523  ∃wex 1744  Ⅎwnf 1748   ∈ wcel 2030  Ⅎwnfc 2780 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233 This theorem is referenced by:  spcegv  3325  rspce  3335  euotd  5004  bnj607  31112  bnj1491  31251  rspcegf  39496  stoweidlem36  40571  stoweidlem46  40581
 Copyright terms: Public domain W3C validator