![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcimdv | Structured version Visualization version GIF version |
Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
spcimdv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
spcimdv.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
spcimdv | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcimdv.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) | |
2 | 1 | ex 449 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 → 𝜒))) |
3 | 2 | alrimiv 2000 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒))) |
4 | spcimdv.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
5 | nfv 1988 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
6 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | spcimgft 3420 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 → 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥𝜓 → 𝜒))) |
8 | 3, 4, 7 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∀wal 1626 = wceq 1628 ∈ wcel 2135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-v 3338 |
This theorem is referenced by: spcdv 3427 spcimedv 3428 rspcimdv 3446 mrieqv2d 16497 mreexexlemd 16502 intabssd 38414 |
Copyright terms: Public domain | W3C validator |