Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spcimdv Structured version   Visualization version   GIF version

Theorem spcimdv 3426
 Description: Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
spcimdv.1 (𝜑𝐴𝐵)
spcimdv.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
spcimdv (𝜑 → (∀𝑥𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem spcimdv
StepHypRef Expression
1 spcimdv.2 . . . 4 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
21ex 449 . . 3 (𝜑 → (𝑥 = 𝐴 → (𝜓𝜒)))
32alrimiv 2000 . 2 (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)))
4 spcimdv.1 . 2 (𝜑𝐴𝐵)
5 nfv 1988 . . 3 𝑥𝜒
6 nfcv 2898 . . 3 𝑥𝐴
75, 6spcimgft 3420 . 2 (∀𝑥(𝑥 = 𝐴 → (𝜓𝜒)) → (𝐴𝐵 → (∀𝑥𝜓𝜒)))
83, 4, 7sylc 65 1 (𝜑 → (∀𝑥𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1626   = wceq 1628   ∈ wcel 2135 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-v 3338 This theorem is referenced by:  spcdv  3427  spcimedv  3428  rspcimdv  3446  mrieqv2d  16497  mreexexlemd  16502  intabssd  38414
 Copyright terms: Public domain W3C validator