![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spesbc | Structured version Visualization version GIF version |
Description: Existence form of spsbc 3481. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
spesbc | ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcex 3478 | . . 3 ⊢ ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | |
2 | rspesbca 3553 | . . 3 ⊢ ((𝐴 ∈ V ∧ [𝐴 / 𝑥]𝜑) → ∃𝑥 ∈ V 𝜑) | |
3 | 1, 2 | mpancom 704 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥 ∈ V 𝜑) |
4 | rexv 3251 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
5 | 3, 4 | sylib 208 | 1 ⊢ ([𝐴 / 𝑥]𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 Vcvv 3231 [wsbc 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-v 3233 df-sbc 3469 |
This theorem is referenced by: spesbcd 3555 opelopabsb 5014 sbccomieg 37674 frege124d 38370 sbiota1 38952 |
Copyright terms: Public domain | W3C validator |