Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf1 Structured version   Visualization version   GIF version

Theorem sprsymrelf1 42256
 Description: The mapping 𝐹 is a one-to-one function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelf1 𝐹:𝑃1-1𝑅
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑟   𝑅,𝑝   𝑉,𝑟,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑝)

Proof of Theorem sprsymrelf1
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.p . . 3 𝑃 = 𝒫 (Pairs‘𝑉)
2 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
3 sprsymrelf.f . . 3 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
41, 2, 3sprsymrelf 42255 . 2 𝐹:𝑃𝑅
51, 2, 3sprsymrelfv 42254 . . . . 5 (𝑎𝑃 → (𝐹𝑎) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
61, 2, 3sprsymrelfv 42254 . . . . 5 (𝑏𝑃 → (𝐹𝑏) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}})
75, 6eqeqan12d 2776 . . . 4 ((𝑎𝑃𝑏𝑃) → ((𝐹𝑎) = (𝐹𝑏) ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}))
81eleq2i 2831 . . . . . 6 (𝑎𝑃𝑎 ∈ 𝒫 (Pairs‘𝑉))
9 vex 3343 . . . . . . 7 𝑎 ∈ V
109elpw 4308 . . . . . 6 (𝑎 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑎 ⊆ (Pairs‘𝑉))
118, 10bitri 264 . . . . 5 (𝑎𝑃𝑎 ⊆ (Pairs‘𝑉))
121eleq2i 2831 . . . . . 6 (𝑏𝑃𝑏 ∈ 𝒫 (Pairs‘𝑉))
13 vex 3343 . . . . . . 7 𝑏 ∈ V
1413elpw 4308 . . . . . 6 (𝑏 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑏 ⊆ (Pairs‘𝑉))
1512, 14bitri 264 . . . . 5 (𝑏𝑃𝑏 ⊆ (Pairs‘𝑉))
16 sprsymrelf1lem 42251 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎𝑏))
1716imp 444 . . . . . . 7 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎𝑏)
18 eqcom 2767 . . . . . . . . . 10 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} ↔ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}})
19 sprsymrelf1lem 42251 . . . . . . . . . 10 ((𝑏 ⊆ (Pairs‘𝑉) ∧ 𝑎 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2018, 19syl5bi 232 . . . . . . . . 9 ((𝑏 ⊆ (Pairs‘𝑉) ∧ 𝑎 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2120ancoms 468 . . . . . . . 8 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑏𝑎))
2221imp 444 . . . . . . 7 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑏𝑎)
2317, 22eqssd 3761 . . . . . 6 (((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) ∧ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}}) → 𝑎 = 𝑏)
2423ex 449 . . . . 5 ((𝑎 ⊆ (Pairs‘𝑉) ∧ 𝑏 ⊆ (Pairs‘𝑉)) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 = 𝑏))
2511, 15, 24syl2anb 497 . . . 4 ((𝑎𝑃𝑏𝑃) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑎 𝑐 = {𝑥, 𝑦}} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑏 𝑐 = {𝑥, 𝑦}} → 𝑎 = 𝑏))
267, 25sylbid 230 . . 3 ((𝑎𝑃𝑏𝑃) → ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏))
2726rgen2a 3115 . 2 𝑎𝑃𝑏𝑃 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)
28 dff13 6675 . 2 (𝐹:𝑃1-1𝑅 ↔ (𝐹:𝑃𝑅 ∧ ∀𝑎𝑃𝑏𝑃 ((𝐹𝑎) = (𝐹𝑏) → 𝑎 = 𝑏)))
294, 27, 28mpbir2an 993 1 𝐹:𝑃1-1𝑅
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  {crab 3054   ⊆ wss 3715  𝒫 cpw 4302  {cpr 4323   class class class wbr 4804  {copab 4864   ↦ cmpt 4881   × cxp 5264  ⟶wf 6045  –1-1→wf1 6046  ‘cfv 6049  Pairscspr 42237 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-spr 42238 This theorem is referenced by:  sprsymrelf1o  42258
 Copyright terms: Public domain W3C validator