Step | Hyp | Ref
| Expression |
1 | | simpl 474 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑉 ∈ V) |
2 | | eleq1 2819 |
. . . . . . . . . . . 12
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ 𝑃 ↔ {𝑥, 𝑦} ∈ 𝑃)) |
3 | | vex 3335 |
. . . . . . . . . . . . 13
⊢ 𝑥 ∈ V |
4 | | vex 3335 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
5 | | prsssprel 42240 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃 ⊆ (Pairs‘𝑉) ∧ {𝑥, 𝑦} ∈ 𝑃 ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
6 | 5 | 3exp 1112 |
. . . . . . . . . . . . . 14
⊢ (𝑃 ⊆ (Pairs‘𝑉) → ({𝑥, 𝑦} ∈ 𝑃 → ((𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
7 | 6 | com13 88 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
8 | 3, 4, 7 | mp2an 710 |
. . . . . . . . . . . 12
⊢ ({𝑥, 𝑦} ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
9 | 2, 8 | syl6bi 243 |
. . . . . . . . . . 11
⊢ (𝑐 = {𝑥, 𝑦} → (𝑐 ∈ 𝑃 → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
10 | 9 | com12 32 |
. . . . . . . . . 10
⊢ (𝑐 ∈ 𝑃 → (𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)))) |
11 | 10 | rexlimiv 3157 |
. . . . . . . . 9
⊢
(∃𝑐 ∈
𝑃 𝑐 = {𝑥, 𝑦} → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
12 | 11 | com12 32 |
. . . . . . . 8
⊢ (𝑃 ⊆ (Pairs‘𝑉) → (∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦} → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
13 | 12 | adantl 473 |
. . . . . . 7
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦} → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
14 | 13 | imp 444 |
. . . . . 6
⊢ (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
15 | 14 | simpld 477 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → 𝑥 ∈ 𝑉) |
16 | 14 | simprd 482 |
. . . . 5
⊢ (((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → 𝑦 ∈ 𝑉) |
17 | 1, 1, 15, 16 | opabex2 7386 |
. . . 4
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ V) |
18 | | elopab 5125 |
. . . . . . 7
⊢ (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑥∃𝑦(𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦})) |
19 | 11 | adantl 473 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → (𝑃 ⊆ (Pairs‘𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
20 | 19 | adantld 484 |
. . . . . . . . . . 11
⊢ ((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
21 | 20 | imp 444 |
. . . . . . . . . 10
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
22 | | eleq1 2819 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑥, 𝑦〉 → (𝑝 ∈ (𝑉 × 𝑉) ↔ 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉))) |
23 | 22 | ad2antrr 764 |
. . . . . . . . . . 11
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ 〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉))) |
24 | | opelxp 5295 |
. . . . . . . . . . 11
⊢
(〈𝑥, 𝑦〉 ∈ (𝑉 × 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉)) |
25 | 23, 24 | syl6bb 276 |
. . . . . . . . . 10
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → (𝑝 ∈ (𝑉 × 𝑉) ↔ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉))) |
26 | 21, 25 | mpbird 247 |
. . . . . . . . 9
⊢ (((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) ∧ (𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉))) → 𝑝 ∈ (𝑉 × 𝑉)) |
27 | 26 | ex 449 |
. . . . . . . 8
⊢ ((𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉))) |
28 | 27 | exlimivv 2001 |
. . . . . . 7
⊢
(∃𝑥∃𝑦(𝑝 = 〈𝑥, 𝑦〉 ∧ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉))) |
29 | 18, 28 | sylbi 207 |
. . . . . 6
⊢ (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} → ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → 𝑝 ∈ (𝑉 × 𝑉))) |
30 | 29 | com12 32 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → (𝑝 ∈ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} → 𝑝 ∈ (𝑉 × 𝑉))) |
31 | 30 | ssrdv 3742 |
. . . 4
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ⊆ (𝑉 × 𝑉)) |
32 | 17, 31 | elpwd 4303 |
. . 3
⊢ ((𝑉 ∈ V ∧ 𝑃 ⊆ (Pairs‘𝑉)) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |
33 | 32 | ex 449 |
. 2
⊢ (𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))) |
34 | | fvprc 6338 |
. . . . 5
⊢ (¬
𝑉 ∈ V →
(Pairs‘𝑉) =
∅) |
35 | 34 | sseq2d 3766 |
. . . 4
⊢ (¬
𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 ⊆ ∅)) |
36 | | ss0b 4108 |
. . . 4
⊢ (𝑃 ⊆ ∅ ↔ 𝑃 = ∅) |
37 | 35, 36 | syl6bb 276 |
. . 3
⊢ (¬
𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) ↔ 𝑃 = ∅)) |
38 | | rex0 4073 |
. . . . . . 7
⊢ ¬
∃𝑐 ∈ ∅
𝑐 = {𝑥, 𝑦} |
39 | | rexeq 3270 |
. . . . . . 7
⊢ (𝑃 = ∅ → (∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐 ∈ ∅ 𝑐 = {𝑥, 𝑦})) |
40 | 38, 39 | mtbiri 316 |
. . . . . 6
⊢ (𝑃 = ∅ → ¬
∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) |
41 | 40 | alrimivv 1997 |
. . . . 5
⊢ (𝑃 = ∅ → ∀𝑥∀𝑦 ¬ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) |
42 | | opab0 5149 |
. . . . 5
⊢
({〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} = ∅ ↔ ∀𝑥∀𝑦 ¬ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}) |
43 | 41, 42 | sylibr 224 |
. . . 4
⊢ (𝑃 = ∅ → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} = ∅) |
44 | | 0elpw 4975 |
. . . 4
⊢ ∅
∈ 𝒫 (𝑉 ×
𝑉) |
45 | 43, 44 | syl6eqel 2839 |
. . 3
⊢ (𝑃 = ∅ → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |
46 | 37, 45 | syl6bi 243 |
. 2
⊢ (¬
𝑉 ∈ V → (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))) |
47 | 33, 46 | pm2.61i 176 |
1
⊢ (𝑃 ⊆ (Pairs‘𝑉) → {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑃 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉)) |