Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprvalpwn0 Structured version   Visualization version   GIF version

Theorem sprvalpwn0 42243
Description: The set of all unordered pairs over a given set 𝑉, expressed by a restricted class abstraction. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprvalpwn0 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprvalpwn0
StepHypRef Expression
1 sprvalpw 42240 . 2 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
2 id 22 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → 𝑝 = {𝑎, 𝑏})
3 vex 3343 . . . . . . . . . . 11 𝑎 ∈ V
43prnz 4453 . . . . . . . . . 10 {𝑎, 𝑏} ≠ ∅
54a1i 11 . . . . . . . . 9 (𝑝 = {𝑎, 𝑏} → {𝑎, 𝑏} ≠ ∅)
62, 5eqnetrd 2999 . . . . . . . 8 (𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅)
76a1i 11 . . . . . . 7 ((𝑎𝑉𝑏𝑉) → (𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅))
87rexlimivv 3174 . . . . . 6 (∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏} → 𝑝 ≠ ∅)
98adantl 473 . . . . 5 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) → 𝑝 ≠ ∅)
109pm4.71ri 668 . . . 4 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
11 ancom 465 . . . . . 6 ((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ↔ (𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅))
1211anbi1i 733 . . . . 5 (((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ ((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
13 anass 684 . . . . 5 (((𝑝 ≠ ∅ ∧ 𝑝 ∈ 𝒫 𝑉) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})))
14 eldifsn 4462 . . . . . . 7 (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅))
1514bicomi 214 . . . . . 6 ((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ↔ 𝑝 ∈ (𝒫 𝑉 ∖ {∅}))
1615anbi1i 733 . . . . 5 (((𝑝 ∈ 𝒫 𝑉𝑝 ≠ ∅) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1712, 13, 163bitr3i 290 . . . 4 ((𝑝 ≠ ∅ ∧ (𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏})) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1810, 17bitri 264 . . 3 ((𝑝 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}) ↔ (𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∧ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
1918rabbia2 3327 . 2 {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}}
201, 19syl6eq 2810 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∈ (𝒫 𝑉 ∖ {∅}) ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  wrex 3051  {crab 3054  cdif 3712  c0 4058  𝒫 cpw 4302  {csn 4321  {cpr 4323  cfv 6049  Pairscspr 42237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-spr 42238
This theorem is referenced by:  sprvalpwle2  42249
  Copyright terms: Public domain W3C validator