Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  spsbim Structured version   Visualization version   GIF version

Theorem spsbim 2393
 Description: Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
spsbim (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))

Proof of Theorem spsbim
StepHypRef Expression
1 stdpc4 2352 . 2 (∀𝑥(𝜑𝜓) → [𝑦 / 𝑥](𝜑𝜓))
2 sbi1 2391 . 2 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
31, 2syl 17 1 (∀𝑥(𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1478  [wsb 1877 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044  ax-13 2245 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878 This theorem is referenced by:  mo3  2506  bj-hbsb3t  32354  wl-mo3t  32990  pm11.59  38073  sbiota1  38117
 Copyright terms: Public domain W3C validator