![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spsd | Structured version Visualization version GIF version |
Description: Deduction generalizing antecedent. (Contributed by NM, 17-Aug-1994.) |
Ref | Expression |
---|---|
spsd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
spsd | ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2091 | . 2 ⊢ (∀𝑥𝜓 → 𝜓) | |
2 | spsd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | syl5 34 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-12 2087 |
This theorem depends on definitions: df-bi 197 df-ex 1745 |
This theorem is referenced by: axc11v 2176 axc11rv 2177 axc11rvOLD 2178 equvel 2375 nfsb4t 2417 mo2v 2505 moexex 2570 2eu6 2587 zorn2lem4 9359 zorn2lem5 9360 axpowndlem3 9459 axacndlem5 9471 axc11n11r 32798 wl-equsal1i 33459 axc5c4c711 38919 |
Copyright terms: Public domain | W3C validator |