MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spthdep Structured version   Visualization version   GIF version

Theorem spthdep 27517
Description: A simple path (at least of length 1) has different start and end points (in an undirected graph). (Contributed by AV, 31-Jan-2021.) (Proof shortened by AV, 30-Oct-2021.)
Assertion
Ref Expression
spthdep ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))

Proof of Theorem spthdep
StepHypRef Expression
1 isspth 27507 . . 3 (𝐹(SPaths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃))
2 trliswlk 27481 . . . . . . . . 9 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2823 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 27400 . . . . . . . . 9 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
52, 4syl 17 . . . . . . . 8 (𝐹(Trails‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
65anim1i 616 . . . . . . 7 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
7 df-f1 6362 . . . . . . 7 (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun 𝑃))
86, 7sylibr 236 . . . . . 6 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → 𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺))
9 wlkcl 27399 . . . . . . . 8 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
10 nn0fz0 13008 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 ↔ (♯‘𝐹) ∈ (0...(♯‘𝐹)))
1110biimpi 218 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (0...(♯‘𝐹)))
12 0elfz 13007 . . . . . . . . 9 ((♯‘𝐹) ∈ ℕ0 → 0 ∈ (0...(♯‘𝐹)))
1311, 12jca 514 . . . . . . . 8 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
142, 9, 133syl 18 . . . . . . 7 (𝐹(Trails‘𝐺)𝑃 → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
1514adantr 483 . . . . . 6 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹))))
168, 15jca 514 . . . . 5 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → (𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))))
17 eqcom 2830 . . . . . 6 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘(♯‘𝐹)) = (𝑃‘0))
18 f1veqaeq 7017 . . . . . 6 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (♯‘𝐹) = 0))
1917, 18syl5bi 244 . . . . 5 ((𝑃:(0...(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ ((♯‘𝐹) ∈ (0...(♯‘𝐹)) ∧ 0 ∈ (0...(♯‘𝐹)))) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0))
2016, 19syl 17 . . . 4 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (♯‘𝐹) = 0))
2120necon3d 3039 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun 𝑃) → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
221, 21sylbi 219 . 2 (𝐹(SPaths‘𝐺)𝑃 → ((♯‘𝐹) ≠ 0 → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹))))
2322imp 409 1 ((𝐹(SPaths‘𝐺)𝑃 ∧ (♯‘𝐹) ≠ 0) → (𝑃‘0) ≠ (𝑃‘(♯‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  ccnv 5556  Fun wfun 6351  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  0cc0 10539  0cn0 11900  ...cfz 12895  chash 13693  Vtxcvtx 26783  Walkscwlks 27380  Trailsctrls 27474  SPathscspths 27496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-hash 13694  df-word 13865  df-wlks 27383  df-trls 27476  df-spths 27500
This theorem is referenced by:  cyclnspth  27583
  Copyright terms: Public domain W3C validator