![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sqdivzi | Structured version Visualization version GIF version |
Description: Distribution of square over division. (Contributed by Scott Fenton, 7-Jun-2013.) |
Ref | Expression |
---|---|
sqdivzi.1 | ⊢ 𝐴 ∈ ℂ |
sqdivzi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
sqdivzi | ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6823 | . . . 4 ⊢ (𝐵 = if(𝐵 ≠ 0, 𝐵, 1) → (𝐴 / 𝐵) = (𝐴 / if(𝐵 ≠ 0, 𝐵, 1))) | |
2 | 1 | oveq1d 6830 | . . 3 ⊢ (𝐵 = if(𝐵 ≠ 0, 𝐵, 1) → ((𝐴 / 𝐵)↑2) = ((𝐴 / if(𝐵 ≠ 0, 𝐵, 1))↑2)) |
3 | oveq1 6822 | . . . 4 ⊢ (𝐵 = if(𝐵 ≠ 0, 𝐵, 1) → (𝐵↑2) = (if(𝐵 ≠ 0, 𝐵, 1)↑2)) | |
4 | 3 | oveq2d 6831 | . . 3 ⊢ (𝐵 = if(𝐵 ≠ 0, 𝐵, 1) → ((𝐴↑2) / (𝐵↑2)) = ((𝐴↑2) / (if(𝐵 ≠ 0, 𝐵, 1)↑2))) |
5 | 2, 4 | eqeq12d 2776 | . 2 ⊢ (𝐵 = if(𝐵 ≠ 0, 𝐵, 1) → (((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2)) ↔ ((𝐴 / if(𝐵 ≠ 0, 𝐵, 1))↑2) = ((𝐴↑2) / (if(𝐵 ≠ 0, 𝐵, 1)↑2)))) |
6 | sqdivzi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
7 | sqdivzi.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
8 | ax-1cn 10207 | . . . 4 ⊢ 1 ∈ ℂ | |
9 | 7, 8 | keepel 4300 | . . 3 ⊢ if(𝐵 ≠ 0, 𝐵, 1) ∈ ℂ |
10 | elimne0 10243 | . . 3 ⊢ if(𝐵 ≠ 0, 𝐵, 1) ≠ 0 | |
11 | 6, 9, 10 | sqdivi 13163 | . 2 ⊢ ((𝐴 / if(𝐵 ≠ 0, 𝐵, 1))↑2) = ((𝐴↑2) / (if(𝐵 ≠ 0, 𝐵, 1)↑2)) |
12 | 5, 11 | dedth 4284 | 1 ⊢ (𝐵 ≠ 0 → ((𝐴 / 𝐵)↑2) = ((𝐴↑2) / (𝐵↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ≠ wne 2933 ifcif 4231 (class class class)co 6815 ℂcc 10147 0cc0 10149 1c1 10150 / cdiv 10897 2c2 11283 ↑cexp 13075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-n0 11506 df-z 11591 df-uz 11901 df-seq 13017 df-exp 13076 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |