MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqd Structured version   Visualization version   GIF version

Theorem sqeqd 14528
Description: A deduction for showing two numbers whose squares are equal are themselves equal. (Contributed by Mario Carneiro, 3-Apr-2015.)
Hypotheses
Ref Expression
sqeqd.1 (𝜑𝐴 ∈ ℂ)
sqeqd.2 (𝜑𝐵 ∈ ℂ)
sqeqd.3 (𝜑 → (𝐴↑2) = (𝐵↑2))
sqeqd.4 (𝜑 → 0 ≤ (ℜ‘𝐴))
sqeqd.5 (𝜑 → 0 ≤ (ℜ‘𝐵))
sqeqd.6 ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵)
Assertion
Ref Expression
sqeqd (𝜑𝐴 = 𝐵)

Proof of Theorem sqeqd
StepHypRef Expression
1 sqeqd.3 . . . . 5 (𝜑 → (𝐴↑2) = (𝐵↑2))
2 sqeqd.1 . . . . . 6 (𝜑𝐴 ∈ ℂ)
3 sqeqd.2 . . . . . 6 (𝜑𝐵 ∈ ℂ)
4 sqeqor 13581 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
52, 3, 4syl2anc 586 . . . . 5 (𝜑 → ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵)))
61, 5mpbid 234 . . . 4 (𝜑 → (𝐴 = 𝐵𝐴 = -𝐵))
76ord 860 . . 3 (𝜑 → (¬ 𝐴 = 𝐵𝐴 = -𝐵))
8 simpl 485 . . . . 5 ((𝜑𝐴 = -𝐵) → 𝜑)
9 fveq2 6673 . . . . . . 7 (𝐴 = -𝐵 → (ℜ‘𝐴) = (ℜ‘-𝐵))
10 reneg 14487 . . . . . . . 8 (𝐵 ∈ ℂ → (ℜ‘-𝐵) = -(ℜ‘𝐵))
113, 10syl 17 . . . . . . 7 (𝜑 → (ℜ‘-𝐵) = -(ℜ‘𝐵))
129, 11sylan9eqr 2881 . . . . . 6 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐴) = -(ℜ‘𝐵))
13 sqeqd.4 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (ℜ‘𝐴))
1413adantr 483 . . . . . . . . . . 11 ((𝜑𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐴))
1514, 12breqtrd 5095 . . . . . . . . . 10 ((𝜑𝐴 = -𝐵) → 0 ≤ -(ℜ‘𝐵))
163adantr 483 . . . . . . . . . . . 12 ((𝜑𝐴 = -𝐵) → 𝐵 ∈ ℂ)
17 recl 14472 . . . . . . . . . . . 12 (𝐵 ∈ ℂ → (ℜ‘𝐵) ∈ ℝ)
1816, 17syl 17 . . . . . . . . . . 11 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐵) ∈ ℝ)
1918le0neg1d 11214 . . . . . . . . . 10 ((𝜑𝐴 = -𝐵) → ((ℜ‘𝐵) ≤ 0 ↔ 0 ≤ -(ℜ‘𝐵)))
2015, 19mpbird 259 . . . . . . . . 9 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐵) ≤ 0)
21 sqeqd.5 . . . . . . . . . 10 (𝜑 → 0 ≤ (ℜ‘𝐵))
2221adantr 483 . . . . . . . . 9 ((𝜑𝐴 = -𝐵) → 0 ≤ (ℜ‘𝐵))
23 0re 10646 . . . . . . . . . 10 0 ∈ ℝ
24 letri3 10729 . . . . . . . . . 10 (((ℜ‘𝐵) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵))))
2518, 23, 24sylancl 588 . . . . . . . . 9 ((𝜑𝐴 = -𝐵) → ((ℜ‘𝐵) = 0 ↔ ((ℜ‘𝐵) ≤ 0 ∧ 0 ≤ (ℜ‘𝐵))))
2620, 22, 25mpbir2and 711 . . . . . . . 8 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐵) = 0)
2726negeqd 10883 . . . . . . 7 ((𝜑𝐴 = -𝐵) → -(ℜ‘𝐵) = -0)
28 neg0 10935 . . . . . . 7 -0 = 0
2927, 28syl6eq 2875 . . . . . 6 ((𝜑𝐴 = -𝐵) → -(ℜ‘𝐵) = 0)
3012, 29eqtrd 2859 . . . . 5 ((𝜑𝐴 = -𝐵) → (ℜ‘𝐴) = 0)
31 sqeqd.6 . . . . 5 ((𝜑 ∧ (ℜ‘𝐴) = 0 ∧ (ℜ‘𝐵) = 0) → 𝐴 = 𝐵)
328, 30, 26, 31syl3anc 1367 . . . 4 ((𝜑𝐴 = -𝐵) → 𝐴 = 𝐵)
3332ex 415 . . 3 (𝜑 → (𝐴 = -𝐵𝐴 = 𝐵))
347, 33syld 47 . 2 (𝜑 → (¬ 𝐴 = 𝐵𝐴 = 𝐵))
3534pm2.18d 127 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1536  wcel 2113   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  cle 10679  -cneg 10874  2c2 11695  cexp 13432  cre 14459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator