MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqge0d Structured version   Visualization version   GIF version

Theorem sqge0d 13019
Description: A square of a real is nonnegative. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
resqcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
sqge0d (𝜑 → 0 ≤ (𝐴↑2))

Proof of Theorem sqge0d
StepHypRef Expression
1 resqcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 sqge0 12923 . 2 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
31, 2syl 17 1 (𝜑 → 0 ≤ (𝐴↑2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1988   class class class wbr 4644  (class class class)co 6635  cr 9920  0cc0 9921  cle 10060  2c2 11055  cexp 12843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-n0 11278  df-z 11363  df-uz 11673  df-seq 12785  df-exp 12844
This theorem is referenced by:  cjmulge0  13867  sqrlem7  13970  absrele  14029  amgm2  14090  efgt0  14814  sinbnd  14891  cosbnd  14892  cphnmf  22976  ipge0  22979  csbren  23163  trirn  23164  rrxmet  23172  rrxdstprj1  23173  minveclem3b  23180  minveclem7  23187  pjthlem1  23189  dveflem  23723  loglesqrt  24480  mulog2sumlem2  25205  log2sumbnd  25214  eqeelen  25765  brbtwn2  25766  colinearalglem4  25770  axcgrid  25777  axsegconlem3  25780  ax5seglem3  25792  minvecolem5  27707  minvecolem7  27709  normpyc  27973  pjhthlem1  28220  chscllem2  28467  pjige0i  28519  hstle1  29055  strlem3a  29081  2sqmod  29622  sqsscirc1  29928  areacirclem1  33471  areacirclem4  33474  rrnmet  33599  rrndstprj1  33600  rrndstprj2  33601  pellexlem2  37213  pellexlem6  37217  int-sqgeq0d  38309  sqrlearg  39583  rrndistlt  40273  hoiqssbllem2  40600  flsqrt  41273
  Copyright terms: Public domain W3C validator