MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreulem Structured version   Visualization version   GIF version

Theorem sqreulem 14722
Description: Lemma for sqreu 14723: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Hypothesis
Ref Expression
sqrteulem.1 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
Assertion
Ref Expression
sqreulem ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+))

Proof of Theorem sqreulem
StepHypRef Expression
1 sqrteulem.1 . . . . 5 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
21oveq1i 7169 . . . 4 (𝐵↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2)
3 abscl 14641 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
4 absge0 14650 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
5 resqrtcl 14616 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
63, 4, 5syl2anc 586 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
76recnd 10672 . . . . . 6 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
87adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
93recnd 10672 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
10 addcl 10622 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
119, 10mpancom 686 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
1211adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
13 abscl 14641 . . . . . . . . 9 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
1411, 13syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
1514recnd 10672 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
1615adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
1711abs00ad 14653 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
1817necon3bid 3063 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
1918biimpar 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
2012, 16, 19divcld 11419 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
218, 20sqmuld 13525 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = (((√‘(abs‘𝐴))↑2) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2)))
222, 21syl5eq 2871 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵↑2) = (((√‘(abs‘𝐴))↑2) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2)))
233adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
244adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (abs‘𝐴))
25 resqrtth 14618 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → ((√‘(abs‘𝐴))↑2) = (abs‘𝐴))
2623, 24, 25syl2anc 586 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴))↑2) = (abs‘𝐴))
2712, 16, 19sqdivd 13526 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2) = ((((abs‘𝐴) + 𝐴)↑2) / ((abs‘((abs‘𝐴) + 𝐴))↑2)))
28 absvalsq 14643 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
29 2cn 11715 . . . . . . . . . . . . . 14 2 ∈ ℂ
30 mulass 10628 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · (abs‘𝐴)) · 𝐴) = (2 · ((abs‘𝐴) · 𝐴)))
3129, 30mp3an1 1444 . . . . . . . . . . . . 13 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · (abs‘𝐴)) · 𝐴) = (2 · ((abs‘𝐴) · 𝐴)))
329, 31mpancom 686 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) · 𝐴) = (2 · ((abs‘𝐴) · 𝐴)))
33 mulcl 10624 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (2 · (abs‘𝐴)) ∈ ℂ)
3429, 9, 33sylancr 589 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℂ)
35 mulcom 10626 . . . . . . . . . . . . 13 (((2 · (abs‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · (abs‘𝐴)) · 𝐴) = (𝐴 · (2 · (abs‘𝐴))))
3634, 35mpancom 686 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) · 𝐴) = (𝐴 · (2 · (abs‘𝐴))))
3732, 36eqtr3d 2861 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (2 · ((abs‘𝐴) · 𝐴)) = (𝐴 · (2 · (abs‘𝐴))))
3828, 37oveq12d 7177 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) = ((𝐴 · (∗‘𝐴)) + (𝐴 · (2 · (abs‘𝐴)))))
39 cjcl 14467 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
40 adddi 10629 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ ∧ (2 · (abs‘𝐴)) ∈ ℂ) → (𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) = ((𝐴 · (∗‘𝐴)) + (𝐴 · (2 · (abs‘𝐴)))))
4139, 34, 40mpd3an23 1459 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) = ((𝐴 · (∗‘𝐴)) + (𝐴 · (2 · (abs‘𝐴)))))
4238, 41eqtr4d 2862 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) = (𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))))
43 sqval 13484 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 7177 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) + (𝐴↑2)) = ((𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + (𝐴 · 𝐴)))
45 binom2 13582 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((abs‘𝐴) + 𝐴)↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) + (𝐴↑2)))
469, 45mpancom 686 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴)↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) + (𝐴↑2)))
47 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
4839, 34addcld 10663 . . . . . . . . 9 (𝐴 ∈ ℂ → ((∗‘𝐴) + (2 · (abs‘𝐴))) ∈ ℂ)
4947, 48, 47adddid 10668 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = ((𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + (𝐴 · 𝐴)))
5044, 46, 493eqtr4d 2869 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴)↑2) = (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))
519, 34mulcld 10664 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) · (2 · (abs‘𝐴))) ∈ ℂ)
529, 39mulcld 10664 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) · (∗‘𝐴)) ∈ ℂ)
5351, 52addcomd 10845 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) · (2 · (abs‘𝐴))) + ((abs‘𝐴) · (∗‘𝐴))) = (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · (2 · (abs‘𝐴)))))
549, 9mulcld 10664 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℂ)
55542timesd 11883 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (2 · ((abs‘𝐴) · (abs‘𝐴))) = (((abs‘𝐴) · (abs‘𝐴)) + ((abs‘𝐴) · (abs‘𝐴))))
56 mul12 10808 . . . . . . . . . . . . 13 ((2 ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐴))) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
5729, 9, 9, 56mp3an2i 1462 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (2 · ((abs‘𝐴) · (abs‘𝐴))) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
589sqvald 13510 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
59 mulcom 10626 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
6039, 59mpdan 685 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
6128, 58, 603eqtr3d 2867 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((abs‘𝐴) · (abs‘𝐴)) = ((∗‘𝐴) · 𝐴))
6261oveq2d 7175 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (((abs‘𝐴) · (abs‘𝐴)) + ((abs‘𝐴) · (abs‘𝐴))) = (((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)))
6355, 57, 623eqtr3rd 2868 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
6463oveq1d 7174 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) = (((abs‘𝐴) · (2 · (abs‘𝐴))) + ((abs‘𝐴) · (∗‘𝐴))))
659, 39, 34adddid 10668 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))) = (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · (2 · (abs‘𝐴)))))
6653, 64, 653eqtr4d 2869 . . . . . . . . 9 (𝐴 ∈ ℂ → ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) = ((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))))
6766oveq1d 7174 . . . . . . . 8 (𝐴 ∈ ℂ → (((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) + ((abs‘𝐴) · 𝐴)) = (((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + ((abs‘𝐴) · 𝐴)))
68 cjadd 14503 . . . . . . . . . . . . 13 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((abs‘𝐴) + 𝐴)) = ((∗‘(abs‘𝐴)) + (∗‘𝐴)))
699, 68mpancom 686 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (∗‘((abs‘𝐴) + 𝐴)) = ((∗‘(abs‘𝐴)) + (∗‘𝐴)))
703cjred 14588 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (∗‘(abs‘𝐴)) = (abs‘𝐴))
7170oveq1d 7174 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((∗‘(abs‘𝐴)) + (∗‘𝐴)) = ((abs‘𝐴) + (∗‘𝐴)))
7269, 71eqtrd 2859 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (∗‘((abs‘𝐴) + 𝐴)) = ((abs‘𝐴) + (∗‘𝐴)))
7372oveq2d 7175 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))) = (((abs‘𝐴) + 𝐴) · ((abs‘𝐴) + (∗‘𝐴))))
749, 47, 9, 39muladdd 11101 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) · ((abs‘𝐴) + (∗‘𝐴))) = ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · 𝐴))))
7573, 74eqtrd 2859 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))) = ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · 𝐴))))
76 absvalsq 14643 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))))
7711, 76syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))))
78 mulcl 10624 . . . . . . . . . . . 12 (((∗‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((∗‘𝐴) · 𝐴) ∈ ℂ)
7939, 78mpancom 686 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) ∈ ℂ)
8054, 79addcld 10663 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) ∈ ℂ)
81 mulcl 10624 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) · 𝐴) ∈ ℂ)
829, 81mpancom 686 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) · 𝐴) ∈ ℂ)
8380, 52, 82addassd 10666 . . . . . . . . 9 (𝐴 ∈ ℂ → (((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) + ((abs‘𝐴) · 𝐴)) = ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · 𝐴))))
8475, 77, 833eqtr4d 2869 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = (((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) + ((abs‘𝐴) · 𝐴)))
859, 48, 47adddid 10668 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = (((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + ((abs‘𝐴) · 𝐴)))
8667, 84, 853eqtr4d 2869 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))
8750, 86oveq12d 7177 . . . . . 6 (𝐴 ∈ ℂ → ((((abs‘𝐴) + 𝐴)↑2) / ((abs‘((abs‘𝐴) + 𝐴))↑2)) = ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
8887adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴)↑2) / ((abs‘((abs‘𝐴) + 𝐴))↑2)) = ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
8927, 88eqtrd 2859 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2) = ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9026, 89oveq12d 7177 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((√‘(abs‘𝐴))↑2) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2)) = ((abs‘𝐴) · ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))))
91 addcl 10622 . . . . . . . 8 ((((∗‘𝐴) + (2 · (abs‘𝐴))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴) ∈ ℂ)
9248, 91mpancom 686 . . . . . . 7 (𝐴 ∈ ℂ → (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴) ∈ ℂ)
939, 47, 92mul12d 10852 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = (𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9493oveq1d 7174 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = ((𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9594adantr 483 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = ((𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
969adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
97 mulcl 10624 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴) ∈ ℂ) → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
9892, 97mpdan 685 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
9998adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
1009, 92mulcld 10664 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
101100adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
102 sqeq0 13489 . . . . . . . . 9 ((abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ → (((abs‘((abs‘𝐴) + 𝐴))↑2) = 0 ↔ (abs‘((abs‘𝐴) + 𝐴)) = 0))
10315, 102syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘((abs‘𝐴) + 𝐴))↑2) = 0 ↔ (abs‘((abs‘𝐴) + 𝐴)) = 0))
10486eqeq1d 2826 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘((abs‘𝐴) + 𝐴))↑2) = 0 ↔ ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = 0))
105103, 104, 173bitr3rd 312 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = 0))
106105necon3bid 3063 . . . . . 6 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 ↔ ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ≠ 0))
107106biimpa 479 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ≠ 0)
10896, 99, 101, 107divassd 11454 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = ((abs‘𝐴) · ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))))
109 simpl 485 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 𝐴 ∈ ℂ)
110109, 101, 107divcan4d 11425 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = 𝐴)
11195, 108, 1103eqtr3d 2867 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) · ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))) = 𝐴)
11222, 90, 1113eqtrd 2863 . 2 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵↑2) = 𝐴)
1136adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℝ)
11411addcjd 14574 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) = (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
115 2re 11714 . . . . . . . . 9 2 ∈ ℝ
11611recld 14556 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
117 remulcl 10625 . . . . . . . . 9 ((2 ∈ ℝ ∧ (ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ) → (2 · (ℜ‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
118115, 116, 117sylancr 589 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (ℜ‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
119114, 118eqeltrd 2916 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
120119adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
12114adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
122120, 121, 19redivcld 11471 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
123113, 122remulcld 10674 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℝ)
124 sqrtge0 14620 . . . . . . 7 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → 0 ≤ (√‘(abs‘𝐴)))
1253, 4, 124syl2anc 586 . . . . . 6 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
126125adantr 483 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (√‘(abs‘𝐴)))
127 negcl 10889 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
128 releabs 14684 . . . . . . . . . . . 12 (-𝐴 ∈ ℂ → (ℜ‘-𝐴) ≤ (abs‘-𝐴))
129127, 128syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘-𝐴) ≤ (abs‘-𝐴))
130 abscl 14641 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (abs‘-𝐴) ∈ ℝ)
131127, 130syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘-𝐴) ∈ ℝ)
132127recld 14556 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘-𝐴) ∈ ℝ)
133131, 132subge0d 11233 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (0 ≤ ((abs‘-𝐴) − (ℜ‘-𝐴)) ↔ (ℜ‘-𝐴) ≤ (abs‘-𝐴)))
134129, 133mpbird 259 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((abs‘-𝐴) − (ℜ‘-𝐴)))
135 readd 14488 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘((abs‘𝐴) + 𝐴)) = ((ℜ‘(abs‘𝐴)) + (ℜ‘𝐴)))
1369, 135mpancom 686 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘((abs‘𝐴) + 𝐴)) = ((ℜ‘(abs‘𝐴)) + (ℜ‘𝐴)))
1373rered 14586 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘(abs‘𝐴)) = (abs‘𝐴))
138 absneg 14640 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
139137, 138eqtr4d 2862 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(abs‘𝐴)) = (abs‘-𝐴))
140 negneg 10939 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
141140fveq2d 6677 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘--𝐴) = (ℜ‘𝐴))
142127renegd 14571 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘--𝐴) = -(ℜ‘-𝐴))
143141, 142eqtr3d 2861 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) = -(ℜ‘-𝐴))
144139, 143oveq12d 7177 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((ℜ‘(abs‘𝐴)) + (ℜ‘𝐴)) = ((abs‘-𝐴) + -(ℜ‘-𝐴)))
145131recnd 10672 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘-𝐴) ∈ ℂ)
146132recnd 10672 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘-𝐴) ∈ ℂ)
147145, 146negsubd 11006 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘-𝐴) + -(ℜ‘-𝐴)) = ((abs‘-𝐴) − (ℜ‘-𝐴)))
148136, 144, 1473eqtrd 2863 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘((abs‘𝐴) + 𝐴)) = ((abs‘-𝐴) − (ℜ‘-𝐴)))
149134, 148breqtrrd 5097 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((abs‘𝐴) + 𝐴)))
150 0le2 11742 . . . . . . . . . 10 0 ≤ 2
151 mulge0 11161 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ ((ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ ∧ 0 ≤ (ℜ‘((abs‘𝐴) + 𝐴)))) → 0 ≤ (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
152115, 150, 151mpanl12 700 . . . . . . . . 9 (((ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ ∧ 0 ≤ (ℜ‘((abs‘𝐴) + 𝐴))) → 0 ≤ (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
153116, 149, 152syl2anc 586 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ≤ (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
154153, 114breqtrrd 5097 . . . . . . 7 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))))
155154adantr 483 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))))
156 absge0 14650 . . . . . . . 8 (((abs‘𝐴) + 𝐴) ∈ ℂ → 0 ≤ (abs‘((abs‘𝐴) + 𝐴)))
15712, 156syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (abs‘((abs‘𝐴) + 𝐴)))
158121, 157, 19ne0gt0d 10780 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 < (abs‘((abs‘𝐴) + 𝐴)))
159 divge0 11512 . . . . . 6 ((((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) ∈ ℝ ∧ 0 ≤ (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴)))) ∧ ((abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ ∧ 0 < (abs‘((abs‘𝐴) + 𝐴)))) → 0 ≤ ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))
160120, 155, 121, 158, 159syl22anc 836 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))
161113, 122, 126, 160mulge0d 11220 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))))
162 2pos 11743 . . . . 5 0 < 2
163 divge0 11512 . . . . 5 (((((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℝ ∧ 0 ≤ ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
164115, 162, 163mpanr12 703 . . . 4 ((((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℝ ∧ 0 ≤ ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))) → 0 ≤ (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
165123, 161, 164syl2anc 586 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
1668, 20mulcld 10664 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
1671, 166eqeltrid 2920 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 𝐵 ∈ ℂ)
168 reval 14468 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) = ((𝐵 + (∗‘𝐵)) / 2))
169167, 168syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (ℜ‘𝐵) = ((𝐵 + (∗‘𝐵)) / 2))
1701oveq1i 7169 . . . . . . 7 (𝐵 + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
1711fveq2i 6676 . . . . . . . . . 10 (∗‘𝐵) = (∗‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))
1728, 20cjmuld 14583 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) = ((∗‘(√‘(abs‘𝐴))) · (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
173171, 172syl5eq 2871 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘𝐵) = ((∗‘(√‘(abs‘𝐴))) · (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
1746cjred 14588 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (∗‘(√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
175174adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
17612, 16, 19cjdivd 14585 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((∗‘((abs‘𝐴) + 𝐴)) / (∗‘(abs‘((abs‘𝐴) + 𝐴)))))
177121cjred 14588 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(abs‘((abs‘𝐴) + 𝐴))) = (abs‘((abs‘𝐴) + 𝐴)))
178177oveq2d 7175 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((∗‘((abs‘𝐴) + 𝐴)) / (∗‘(abs‘((abs‘𝐴) + 𝐴)))) = ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))
179176, 178eqtrd 2859 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))
180175, 179oveq12d 7177 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((∗‘(√‘(abs‘𝐴))) · (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) = ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
181173, 180eqtrd 2859 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘𝐵) = ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
182181oveq2d 7175 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵 + (∗‘𝐵)) = (𝐵 + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
18312cjcld 14558 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
184183, 16, 19divcld 11419 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
1858, 20, 184adddid 10668 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
186170, 182, 1853eqtr4a 2885 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵 + (∗‘𝐵)) = ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
18712, 183, 16, 19divdird 11457 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))) = ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
188187oveq2d 7175 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
189186, 188eqtr4d 2862 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵 + (∗‘𝐵)) = ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))))
190189oveq1d 7174 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵 + (∗‘𝐵)) / 2) = (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
191169, 190eqtrd 2859 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (ℜ‘𝐵) = (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
192165, 191breqtrrd 5097 . 2 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (ℜ‘𝐵))
193 subneg 10938 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
1949, 193mpancom 686 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
195194eqeq1d 2826 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
1969, 127subeq0ad 11010 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
197195, 196bitr3d 283 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
198197necon3bid 3063 . . . . . 6 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 ↔ (abs‘𝐴) ≠ -𝐴))
199198biimpa 479 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘𝐴) ≠ -𝐴)
200 resqcl 13493 . . . . . . . . . 10 ((i · 𝐵) ∈ ℝ → ((i · 𝐵)↑2) ∈ ℝ)
201 ax-icn 10599 . . . . . . . . . . . . 13 i ∈ ℂ
202 sqmul 13488 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2)))
203201, 167, 202sylancr 589 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2)))
204 i2 13568 . . . . . . . . . . . . . 14 (i↑2) = -1
205204a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (i↑2) = -1)
206205, 112oveq12d 7177 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i↑2) · (𝐵↑2)) = (-1 · 𝐴))
207 mulm1 11084 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
208207adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (-1 · 𝐴) = -𝐴)
209203, 206, 2083eqtrd 2863 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵)↑2) = -𝐴)
210209eleq1d 2900 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((i · 𝐵)↑2) ∈ ℝ ↔ -𝐴 ∈ ℝ))
211200, 210syl5ib 246 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → -𝐴 ∈ ℝ))
212 renegcl 10952 . . . . . . . . . 10 (-𝐴 ∈ ℝ → --𝐴 ∈ ℝ)
213140eleq1d 2900 . . . . . . . . . 10 (𝐴 ∈ ℂ → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
214212, 213syl5ib 246 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ → 𝐴 ∈ ℝ))
215109, 211, 214sylsyld 61 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → 𝐴 ∈ ℝ))
216 sqge0 13504 . . . . . . . . . 10 ((i · 𝐵) ∈ ℝ → 0 ≤ ((i · 𝐵)↑2))
217209breq2d 5081 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (0 ≤ ((i · 𝐵)↑2) ↔ 0 ≤ -𝐴))
218216, 217syl5ib 246 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → 0 ≤ -𝐴))
219 le0neg1 11151 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
220219biimprcd 252 . . . . . . . . 9 (0 ≤ -𝐴 → (𝐴 ∈ ℝ → 𝐴 ≤ 0))
221218, 215, 220syl6c 70 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → 𝐴 ≤ 0))
222215, 221jcad 515 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐴 ≤ 0)))
223 absnid 14661 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
224222, 223syl6 35 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → (abs‘𝐴) = -𝐴))
225224necon3ad 3032 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) ≠ -𝐴 → ¬ (i · 𝐵) ∈ ℝ))
226199, 225mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ¬ (i · 𝐵) ∈ ℝ)
227 rpre 12400 . . . 4 ((i · 𝐵) ∈ ℝ+ → (i · 𝐵) ∈ ℝ)
228226, 227nsyl 142 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ¬ (i · 𝐵) ∈ ℝ+)
229 df-nel 3127 . . 3 ((i · 𝐵) ∉ ℝ+ ↔ ¬ (i · 𝐵) ∈ ℝ+)
230228, 229sylibr 236 . 2 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (i · 𝐵) ∉ ℝ+)
231112, 192, 2303jca 1124 1 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wnel 3126   class class class wbr 5069  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541  ici 10542   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873  -cneg 10874   / cdiv 11300  2c2 11695  +crp 12392  cexp 13432  ccj 14458  cre 14459  csqrt 14595  abscabs 14596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-seq 13373  df-exp 13433  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598
This theorem is referenced by:  sqreu  14723  cphsqrtcl2  23793
  Copyright terms: Public domain W3C validator