MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqreulem Structured version   Visualization version   GIF version

Theorem sqreulem 14143
Description: Lemma for sqreu 14144: write a general complex square root in terms of the square root function over nonnegative reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
Hypothesis
Ref Expression
sqrteulem.1 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
Assertion
Ref Expression
sqreulem ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+))

Proof of Theorem sqreulem
StepHypRef Expression
1 sqrteulem.1 . . . . 5 𝐵 = ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))
21oveq1i 6700 . . . 4 (𝐵↑2) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2)
3 abscl 14062 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
4 absge0 14071 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ≤ (abs‘𝐴))
5 resqrtcl 14038 . . . . . . . 8 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → (√‘(abs‘𝐴)) ∈ ℝ)
63, 4, 5syl2anc 694 . . . . . . 7 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℝ)
76recnd 10106 . . . . . 6 (𝐴 ∈ ℂ → (√‘(abs‘𝐴)) ∈ ℂ)
87adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℂ)
93recnd 10106 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ)
10 addcl 10056 . . . . . . . 8 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
119, 10mpancom 704 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘𝐴) + 𝐴) ∈ ℂ)
1211adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) + 𝐴) ∈ ℂ)
13 abscl 14062 . . . . . . . . 9 (((abs‘𝐴) + 𝐴) ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
1411, 13syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
1514recnd 10106 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
1615adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
1711abs00ad 14074 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
1817necon3bid 2867 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴)) ≠ 0 ↔ ((abs‘𝐴) + 𝐴) ≠ 0))
1918biimpar 501 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ≠ 0)
2012, 16, 19divcld 10839 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
218, 20sqmuld 13060 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))↑2) = (((√‘(abs‘𝐴))↑2) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2)))
222, 21syl5eq 2697 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵↑2) = (((√‘(abs‘𝐴))↑2) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2)))
233adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘𝐴) ∈ ℝ)
244adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (abs‘𝐴))
25 resqrtth 14040 . . . . 5 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → ((√‘(abs‘𝐴))↑2) = (abs‘𝐴))
2623, 24, 25syl2anc 694 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴))↑2) = (abs‘𝐴))
2712, 16, 19sqdivd 13061 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2) = ((((abs‘𝐴) + 𝐴)↑2) / ((abs‘((abs‘𝐴) + 𝐴))↑2)))
28 absvalsq 14064 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = (𝐴 · (∗‘𝐴)))
29 2cn 11129 . . . . . . . . . . . . . 14 2 ∈ ℂ
30 mulass 10062 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · (abs‘𝐴)) · 𝐴) = (2 · ((abs‘𝐴) · 𝐴)))
3129, 30mp3an1 1451 . . . . . . . . . . . . 13 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · (abs‘𝐴)) · 𝐴) = (2 · ((abs‘𝐴) · 𝐴)))
329, 31mpancom 704 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) · 𝐴) = (2 · ((abs‘𝐴) · 𝐴)))
33 mulcl 10058 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (2 · (abs‘𝐴)) ∈ ℂ)
3429, 9, 33sylancr 696 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (2 · (abs‘𝐴)) ∈ ℂ)
35 mulcom 10060 . . . . . . . . . . . . 13 (((2 · (abs‘𝐴)) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((2 · (abs‘𝐴)) · 𝐴) = (𝐴 · (2 · (abs‘𝐴))))
3634, 35mpancom 704 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((2 · (abs‘𝐴)) · 𝐴) = (𝐴 · (2 · (abs‘𝐴))))
3732, 36eqtr3d 2687 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (2 · ((abs‘𝐴) · 𝐴)) = (𝐴 · (2 · (abs‘𝐴))))
3828, 37oveq12d 6708 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) = ((𝐴 · (∗‘𝐴)) + (𝐴 · (2 · (abs‘𝐴)))))
39 cjcl 13889 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
40 adddi 10063 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ ∧ (2 · (abs‘𝐴)) ∈ ℂ) → (𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) = ((𝐴 · (∗‘𝐴)) + (𝐴 · (2 · (abs‘𝐴)))))
4139, 34, 40mpd3an23 1466 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) = ((𝐴 · (∗‘𝐴)) + (𝐴 · (2 · (abs‘𝐴)))))
4238, 41eqtr4d 2688 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) = (𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))))
43 sqval 12962 . . . . . . . . 9 (𝐴 ∈ ℂ → (𝐴↑2) = (𝐴 · 𝐴))
4442, 43oveq12d 6708 . . . . . . . 8 (𝐴 ∈ ℂ → ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) + (𝐴↑2)) = ((𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + (𝐴 · 𝐴)))
45 binom2 13019 . . . . . . . . 9 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((abs‘𝐴) + 𝐴)↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) + (𝐴↑2)))
469, 45mpancom 704 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴)↑2) = ((((abs‘𝐴)↑2) + (2 · ((abs‘𝐴) · 𝐴))) + (𝐴↑2)))
47 id 22 . . . . . . . . 9 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
4839, 34addcld 10097 . . . . . . . . 9 (𝐴 ∈ ℂ → ((∗‘𝐴) + (2 · (abs‘𝐴))) ∈ ℂ)
4947, 48, 47adddid 10102 . . . . . . . 8 (𝐴 ∈ ℂ → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = ((𝐴 · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + (𝐴 · 𝐴)))
5044, 46, 493eqtr4d 2695 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴)↑2) = (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))
519, 34mulcld 10098 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) · (2 · (abs‘𝐴))) ∈ ℂ)
529, 39mulcld 10098 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘𝐴) · (∗‘𝐴)) ∈ ℂ)
5351, 52addcomd 10276 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) · (2 · (abs‘𝐴))) + ((abs‘𝐴) · (∗‘𝐴))) = (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · (2 · (abs‘𝐴)))))
549, 9mulcld 10098 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((abs‘𝐴) · (abs‘𝐴)) ∈ ℂ)
55542timesd 11313 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (2 · ((abs‘𝐴) · (abs‘𝐴))) = (((abs‘𝐴) · (abs‘𝐴)) + ((abs‘𝐴) · (abs‘𝐴))))
56 mul12 10240 . . . . . . . . . . . . . 14 ((2 ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐴))) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
5729, 56mp3an1 1451 . . . . . . . . . . . . 13 (((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) ∈ ℂ) → (2 · ((abs‘𝐴) · (abs‘𝐴))) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
589, 9, 57syl2anc 694 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (2 · ((abs‘𝐴) · (abs‘𝐴))) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
599sqvald 13045 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → ((abs‘𝐴)↑2) = ((abs‘𝐴) · (abs‘𝐴)))
60 mulcom 10060 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
6139, 60mpdan 703 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴))
6228, 59, 613eqtr3d 2693 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → ((abs‘𝐴) · (abs‘𝐴)) = ((∗‘𝐴) · 𝐴))
6362oveq2d 6706 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (((abs‘𝐴) · (abs‘𝐴)) + ((abs‘𝐴) · (abs‘𝐴))) = (((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)))
6455, 58, 633eqtr3rd 2694 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) = ((abs‘𝐴) · (2 · (abs‘𝐴))))
6564oveq1d 6705 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) = (((abs‘𝐴) · (2 · (abs‘𝐴))) + ((abs‘𝐴) · (∗‘𝐴))))
669, 39, 34adddid 10102 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))) = (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · (2 · (abs‘𝐴)))))
6753, 65, 663eqtr4d 2695 . . . . . . . . 9 (𝐴 ∈ ℂ → ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) = ((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))))
6867oveq1d 6705 . . . . . . . 8 (𝐴 ∈ ℂ → (((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) + ((abs‘𝐴) · 𝐴)) = (((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + ((abs‘𝐴) · 𝐴)))
69 cjadd 13925 . . . . . . . . . . . . 13 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘((abs‘𝐴) + 𝐴)) = ((∗‘(abs‘𝐴)) + (∗‘𝐴)))
709, 69mpancom 704 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (∗‘((abs‘𝐴) + 𝐴)) = ((∗‘(abs‘𝐴)) + (∗‘𝐴)))
713cjred 14010 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (∗‘(abs‘𝐴)) = (abs‘𝐴))
7271oveq1d 6705 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → ((∗‘(abs‘𝐴)) + (∗‘𝐴)) = ((abs‘𝐴) + (∗‘𝐴)))
7370, 72eqtrd 2685 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (∗‘((abs‘𝐴) + 𝐴)) = ((abs‘𝐴) + (∗‘𝐴)))
7473oveq2d 6706 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))) = (((abs‘𝐴) + 𝐴) · ((abs‘𝐴) + (∗‘𝐴))))
759, 47, 9, 39muladdd 10527 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) · ((abs‘𝐴) + (∗‘𝐴))) = ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · 𝐴))))
7674, 75eqtrd 2685 . . . . . . . . 9 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))) = ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · 𝐴))))
77 absvalsq 14064 . . . . . . . . . 10 (((abs‘𝐴) + 𝐴) ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))))
7811, 77syl 17 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = (((abs‘𝐴) + 𝐴) · (∗‘((abs‘𝐴) + 𝐴))))
79 mulcl 10058 . . . . . . . . . . . 12 (((∗‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((∗‘𝐴) · 𝐴) ∈ ℂ)
8039, 79mpancom 704 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((∗‘𝐴) · 𝐴) ∈ ℂ)
8154, 80addcld 10097 . . . . . . . . . 10 (𝐴 ∈ ℂ → (((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) ∈ ℂ)
82 mulcl 10058 . . . . . . . . . . 11 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) · 𝐴) ∈ ℂ)
839, 82mpancom 704 . . . . . . . . . 10 (𝐴 ∈ ℂ → ((abs‘𝐴) · 𝐴) ∈ ℂ)
8481, 52, 83addassd 10100 . . . . . . . . 9 (𝐴 ∈ ℂ → (((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) + ((abs‘𝐴) · 𝐴)) = ((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + (((abs‘𝐴) · (∗‘𝐴)) + ((abs‘𝐴) · 𝐴))))
8576, 78, 843eqtr4d 2695 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = (((((abs‘𝐴) · (abs‘𝐴)) + ((∗‘𝐴) · 𝐴)) + ((abs‘𝐴) · (∗‘𝐴))) + ((abs‘𝐴) · 𝐴)))
869, 48, 47adddid 10102 . . . . . . . 8 (𝐴 ∈ ℂ → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = (((abs‘𝐴) · ((∗‘𝐴) + (2 · (abs‘𝐴)))) + ((abs‘𝐴) · 𝐴)))
8768, 85, 863eqtr4d 2695 . . . . . . 7 (𝐴 ∈ ℂ → ((abs‘((abs‘𝐴) + 𝐴))↑2) = ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))
8850, 87oveq12d 6708 . . . . . 6 (𝐴 ∈ ℂ → ((((abs‘𝐴) + 𝐴)↑2) / ((abs‘((abs‘𝐴) + 𝐴))↑2)) = ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
8988adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴)↑2) / ((abs‘((abs‘𝐴) + 𝐴))↑2)) = ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9027, 89eqtrd 2685 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2) = ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9126, 90oveq12d 6708 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((√‘(abs‘𝐴))↑2) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))↑2)) = ((abs‘𝐴) · ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))))
92 addcl 10056 . . . . . . . 8 ((((∗‘𝐴) + (2 · (abs‘𝐴))) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴) ∈ ℂ)
9348, 92mpancom 704 . . . . . . 7 (𝐴 ∈ ℂ → (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴) ∈ ℂ)
949, 47, 93mul12d 10283 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = (𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9594oveq1d 6705 . . . . 5 (𝐴 ∈ ℂ → (((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = ((𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
9695adantr 480 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = ((𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))))
979adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘𝐴) ∈ ℂ)
98 mulcl 10058 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴) ∈ ℂ) → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
9993, 98mpdan 703 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
10099adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
1019, 93mulcld 10098 . . . . . 6 (𝐴 ∈ ℂ → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
102101adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ∈ ℂ)
103 sqeq0 12967 . . . . . . . . 9 ((abs‘((abs‘𝐴) + 𝐴)) ∈ ℂ → (((abs‘((abs‘𝐴) + 𝐴))↑2) = 0 ↔ (abs‘((abs‘𝐴) + 𝐴)) = 0))
10415, 103syl 17 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘((abs‘𝐴) + 𝐴))↑2) = 0 ↔ (abs‘((abs‘𝐴) + 𝐴)) = 0))
10587eqeq1d 2653 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘((abs‘𝐴) + 𝐴))↑2) = 0 ↔ ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = 0))
106104, 105, 173bitr3rd 299 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) = 0))
107106necon3bid 2867 . . . . . 6 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 ↔ ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ≠ 0))
108107biimpa 500 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) ≠ 0)
10997, 100, 102, 108divassd 10874 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) · (𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = ((abs‘𝐴) · ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))))
110 simpl 472 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 𝐴 ∈ ℂ)
111110, 102, 108divcan4d 10845 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐴 · ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴))) = 𝐴)
11296, 109, 1113eqtr3d 2693 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) · ((𝐴 · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)) / ((abs‘𝐴) · (((∗‘𝐴) + (2 · (abs‘𝐴))) + 𝐴)))) = 𝐴)
11322, 91, 1123eqtrd 2689 . 2 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵↑2) = 𝐴)
1146adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (√‘(abs‘𝐴)) ∈ ℝ)
11511addcjd 13996 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) = (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
116 2re 11128 . . . . . . . . 9 2 ∈ ℝ
11711recld 13978 . . . . . . . . 9 (𝐴 ∈ ℂ → (ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
118 remulcl 10059 . . . . . . . . 9 ((2 ∈ ℝ ∧ (ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ) → (2 · (ℜ‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
119116, 117, 118sylancr 696 . . . . . . . 8 (𝐴 ∈ ℂ → (2 · (ℜ‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
120115, 119eqeltrd 2730 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
121120adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
12214adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ)
123121, 122, 19redivcld 10891 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℝ)
124114, 123remulcld 10108 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℝ)
125 sqrtge0 14042 . . . . . . 7 (((abs‘𝐴) ∈ ℝ ∧ 0 ≤ (abs‘𝐴)) → 0 ≤ (√‘(abs‘𝐴)))
1263, 4, 125syl2anc 694 . . . . . 6 (𝐴 ∈ ℂ → 0 ≤ (√‘(abs‘𝐴)))
127126adantr 480 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (√‘(abs‘𝐴)))
128 negcl 10319 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
129 releabs 14105 . . . . . . . . . . . 12 (-𝐴 ∈ ℂ → (ℜ‘-𝐴) ≤ (abs‘-𝐴))
130128, 129syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘-𝐴) ≤ (abs‘-𝐴))
131 abscl 14062 . . . . . . . . . . . . 13 (-𝐴 ∈ ℂ → (abs‘-𝐴) ∈ ℝ)
132128, 131syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘-𝐴) ∈ ℝ)
133128recld 13978 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘-𝐴) ∈ ℝ)
134132, 133subge0d 10655 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (0 ≤ ((abs‘-𝐴) − (ℜ‘-𝐴)) ↔ (ℜ‘-𝐴) ≤ (abs‘-𝐴)))
135130, 134mpbird 247 . . . . . . . . . 10 (𝐴 ∈ ℂ → 0 ≤ ((abs‘-𝐴) − (ℜ‘-𝐴)))
136 readd 13910 . . . . . . . . . . . 12 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → (ℜ‘((abs‘𝐴) + 𝐴)) = ((ℜ‘(abs‘𝐴)) + (ℜ‘𝐴)))
1379, 136mpancom 704 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘((abs‘𝐴) + 𝐴)) = ((ℜ‘(abs‘𝐴)) + (ℜ‘𝐴)))
1383rered 14008 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘(abs‘𝐴)) = (abs‘𝐴))
139 absneg 14061 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
140138, 139eqtr4d 2688 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘(abs‘𝐴)) = (abs‘-𝐴))
141 negneg 10369 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → --𝐴 = 𝐴)
142141fveq2d 6233 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘--𝐴) = (ℜ‘𝐴))
143128renegd 13993 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (ℜ‘--𝐴) = -(ℜ‘-𝐴))
144142, 143eqtr3d 2687 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘𝐴) = -(ℜ‘-𝐴))
145140, 144oveq12d 6708 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((ℜ‘(abs‘𝐴)) + (ℜ‘𝐴)) = ((abs‘-𝐴) + -(ℜ‘-𝐴)))
146132recnd 10106 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (abs‘-𝐴) ∈ ℂ)
147133recnd 10106 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℜ‘-𝐴) ∈ ℂ)
148146, 147negsubd 10436 . . . . . . . . . . 11 (𝐴 ∈ ℂ → ((abs‘-𝐴) + -(ℜ‘-𝐴)) = ((abs‘-𝐴) − (ℜ‘-𝐴)))
149137, 145, 1483eqtrd 2689 . . . . . . . . . 10 (𝐴 ∈ ℂ → (ℜ‘((abs‘𝐴) + 𝐴)) = ((abs‘-𝐴) − (ℜ‘-𝐴)))
150135, 149breqtrrd 4713 . . . . . . . . 9 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((abs‘𝐴) + 𝐴)))
151 0le2 11149 . . . . . . . . . 10 0 ≤ 2
152 mulge0 10584 . . . . . . . . . 10 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ ((ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ ∧ 0 ≤ (ℜ‘((abs‘𝐴) + 𝐴)))) → 0 ≤ (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
153116, 151, 152mpanl12 718 . . . . . . . . 9 (((ℜ‘((abs‘𝐴) + 𝐴)) ∈ ℝ ∧ 0 ≤ (ℜ‘((abs‘𝐴) + 𝐴))) → 0 ≤ (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
154117, 150, 153syl2anc 694 . . . . . . . 8 (𝐴 ∈ ℂ → 0 ≤ (2 · (ℜ‘((abs‘𝐴) + 𝐴))))
155154, 115breqtrrd 4713 . . . . . . 7 (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))))
156155adantr 480 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))))
157 absge0 14071 . . . . . . . 8 (((abs‘𝐴) + 𝐴) ∈ ℂ → 0 ≤ (abs‘((abs‘𝐴) + 𝐴)))
15812, 157syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (abs‘((abs‘𝐴) + 𝐴)))
159122, 158, 19ne0gt0d 10212 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 < (abs‘((abs‘𝐴) + 𝐴)))
160 divge0 10930 . . . . . 6 ((((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) ∈ ℝ ∧ 0 ≤ (((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴)))) ∧ ((abs‘((abs‘𝐴) + 𝐴)) ∈ ℝ ∧ 0 < (abs‘((abs‘𝐴) + 𝐴)))) → 0 ≤ ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))
161121, 156, 122, 159, 160syl22anc 1367 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))
162114, 123, 127, 161mulge0d 10642 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))))
163 2pos 11150 . . . . 5 0 < 2
164 divge0 10930 . . . . 5 (((((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℝ ∧ 0 ≤ ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
165116, 163, 164mpanr12 721 . . . 4 ((((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℝ ∧ 0 ≤ ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))))) → 0 ≤ (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
166124, 162, 165syl2anc 694 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
1678, 20mulcld 10098 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) ∈ ℂ)
1681, 167syl5eqel 2734 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 𝐵 ∈ ℂ)
169 reval 13890 . . . . 5 (𝐵 ∈ ℂ → (ℜ‘𝐵) = ((𝐵 + (∗‘𝐵)) / 2))
170168, 169syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (ℜ‘𝐵) = ((𝐵 + (∗‘𝐵)) / 2))
1711oveq1i 6700 . . . . . . 7 (𝐵 + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
1721fveq2i 6232 . . . . . . . . . 10 (∗‘𝐵) = (∗‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))))
1738, 20cjmuld 14005 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) = ((∗‘(√‘(abs‘𝐴))) · (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
174172, 173syl5eq 2697 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘𝐵) = ((∗‘(√‘(abs‘𝐴))) · (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))))
1756cjred 14010 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (∗‘(√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
176175adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(√‘(abs‘𝐴))) = (√‘(abs‘𝐴)))
17712, 16, 19cjdivd 14007 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((∗‘((abs‘𝐴) + 𝐴)) / (∗‘(abs‘((abs‘𝐴) + 𝐴)))))
178122cjred 14010 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(abs‘((abs‘𝐴) + 𝐴))) = (abs‘((abs‘𝐴) + 𝐴)))
179178oveq2d 6706 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((∗‘((abs‘𝐴) + 𝐴)) / (∗‘(abs‘((abs‘𝐴) + 𝐴)))) = ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))
180177, 179eqtrd 2685 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) = ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))
181176, 180oveq12d 6708 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((∗‘(√‘(abs‘𝐴))) · (∗‘(((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))))) = ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
182174, 181eqtrd 2685 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘𝐵) = ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
183182oveq2d 6706 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵 + (∗‘𝐵)) = (𝐵 + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
18412cjcld 13980 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (∗‘((abs‘𝐴) + 𝐴)) ∈ ℂ)
185184, 16, 19divcld 10839 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))) ∈ ℂ)
1868, 20, 185adddid 10102 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))) = (((√‘(abs‘𝐴)) · (((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴)))) + ((√‘(abs‘𝐴)) · ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
187171, 183, 1863eqtr4a 2711 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵 + (∗‘𝐵)) = ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
18812, 184, 16, 19divdird 10877 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴))) = ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴)))))
189188oveq2d 6706 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) = ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) / (abs‘((abs‘𝐴) + 𝐴))) + ((∗‘((abs‘𝐴) + 𝐴)) / (abs‘((abs‘𝐴) + 𝐴))))))
190187, 189eqtr4d 2688 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (𝐵 + (∗‘𝐵)) = ((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))))
191190oveq1d 6705 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵 + (∗‘𝐵)) / 2) = (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
192170, 191eqtrd 2685 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (ℜ‘𝐵) = (((√‘(abs‘𝐴)) · ((((abs‘𝐴) + 𝐴) + (∗‘((abs‘𝐴) + 𝐴))) / (abs‘((abs‘𝐴) + 𝐴)))) / 2))
193166, 192breqtrrd 4713 . 2 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → 0 ≤ (ℜ‘𝐵))
194 subneg 10368 . . . . . . . . . 10 (((abs‘𝐴) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
1959, 194mpancom 704 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) − -𝐴) = ((abs‘𝐴) + 𝐴))
196195eqeq1d 2653 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ ((abs‘𝐴) + 𝐴) = 0))
1979, 128subeq0ad 10440 . . . . . . . 8 (𝐴 ∈ ℂ → (((abs‘𝐴) − -𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
198196, 197bitr3d 270 . . . . . . 7 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) = 0 ↔ (abs‘𝐴) = -𝐴))
199198necon3bid 2867 . . . . . 6 (𝐴 ∈ ℂ → (((abs‘𝐴) + 𝐴) ≠ 0 ↔ (abs‘𝐴) ≠ -𝐴))
200199biimpa 500 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (abs‘𝐴) ≠ -𝐴)
201 resqcl 12971 . . . . . . . . . 10 ((i · 𝐵) ∈ ℝ → ((i · 𝐵)↑2) ∈ ℝ)
202 ax-icn 10033 . . . . . . . . . . . . 13 i ∈ ℂ
203 sqmul 12966 . . . . . . . . . . . . 13 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2)))
204202, 168, 203sylancr 696 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵)↑2) = ((i↑2) · (𝐵↑2)))
205 i2 13005 . . . . . . . . . . . . . 14 (i↑2) = -1
206205a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (i↑2) = -1)
207206, 113oveq12d 6708 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i↑2) · (𝐵↑2)) = (-1 · 𝐴))
208 mulm1 10509 . . . . . . . . . . . . 13 (𝐴 ∈ ℂ → (-1 · 𝐴) = -𝐴)
209208adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (-1 · 𝐴) = -𝐴)
210204, 207, 2093eqtrd 2689 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵)↑2) = -𝐴)
211210eleq1d 2715 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (((i · 𝐵)↑2) ∈ ℝ ↔ -𝐴 ∈ ℝ))
212201, 211syl5ib 234 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → -𝐴 ∈ ℝ))
213 renegcl 10382 . . . . . . . . . 10 (-𝐴 ∈ ℝ → --𝐴 ∈ ℝ)
214141eleq1d 2715 . . . . . . . . . 10 (𝐴 ∈ ℂ → (--𝐴 ∈ ℝ ↔ 𝐴 ∈ ℝ))
215213, 214syl5ib 234 . . . . . . . . 9 (𝐴 ∈ ℂ → (-𝐴 ∈ ℝ → 𝐴 ∈ ℝ))
216110, 212, 215sylsyld 61 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → 𝐴 ∈ ℝ))
217 sqge0 12980 . . . . . . . . . 10 ((i · 𝐵) ∈ ℝ → 0 ≤ ((i · 𝐵)↑2))
218210breq2d 4697 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (0 ≤ ((i · 𝐵)↑2) ↔ 0 ≤ -𝐴))
219217, 218syl5ib 234 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → 0 ≤ -𝐴))
220 le0neg1 10574 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
221220biimprcd 240 . . . . . . . . 9 (0 ≤ -𝐴 → (𝐴 ∈ ℝ → 𝐴 ≤ 0))
222219, 216, 221syl6c 70 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → 𝐴 ≤ 0))
223216, 222jcad 554 . . . . . . 7 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐴 ≤ 0)))
224 absnid 14082 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (abs‘𝐴) = -𝐴)
225223, 224syl6 35 . . . . . 6 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((i · 𝐵) ∈ ℝ → (abs‘𝐴) = -𝐴))
226225necon3ad 2836 . . . . 5 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((abs‘𝐴) ≠ -𝐴 → ¬ (i · 𝐵) ∈ ℝ))
227200, 226mpd 15 . . . 4 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ¬ (i · 𝐵) ∈ ℝ)
228 rpre 11877 . . . 4 ((i · 𝐵) ∈ ℝ+ → (i · 𝐵) ∈ ℝ)
229227, 228nsyl 135 . . 3 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ¬ (i · 𝐵) ∈ ℝ+)
230 df-nel 2927 . . 3 ((i · 𝐵) ∉ ℝ+ ↔ ¬ (i · 𝐵) ∈ ℝ+)
231229, 230sylibr 224 . 2 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → (i · 𝐵) ∉ ℝ+)
232113, 193, 2313jca 1261 1 ((𝐴 ∈ ℂ ∧ ((abs‘𝐴) + 𝐴) ≠ 0) → ((𝐵↑2) = 𝐴 ∧ 0 ≤ (ℜ‘𝐵) ∧ (i · 𝐵) ∉ ℝ+))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wnel 2926   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  ici 9976   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  2c2 11108  +crp 11870  cexp 12900  ccj 13880  cre 13881  csqrt 14017  abscabs 14018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020
This theorem is referenced by:  sqreu  14144  cphsqrtcl2  23032
  Copyright terms: Public domain W3C validator