MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrlem5 Structured version   Visualization version   GIF version

Theorem sqrlem5 14594
Description: Lemma for 01sqrex 14597. (Contributed by Mario Carneiro, 10-Jul-2013.)
Hypotheses
Ref Expression
sqrlem1.1 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
sqrlem1.2 𝐵 = sup(𝑆, ℝ, < )
sqrlem5.3 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
Assertion
Ref Expression
sqrlem5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Distinct variable groups:   𝑎,𝑏,𝑢,𝑣,𝑦,𝑆   𝑥,𝑎,𝐴,𝑏,𝑣,𝑦   𝑣,𝐵,𝑦   𝑢,𝑇,𝑣
Allowed substitution hints:   𝐴(𝑢)   𝐵(𝑥,𝑢,𝑎,𝑏)   𝑆(𝑥)   𝑇(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem sqrlem5
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sqrlem1.1 . . . . . . 7 𝑆 = {𝑥 ∈ ℝ+ ∣ (𝑥↑2) ≤ 𝐴}
21ssrab3 4054 . . . . . 6 𝑆 ⊆ ℝ+
32sseli 3960 . . . . 5 (𝑣𝑆𝑣 ∈ ℝ+)
43rpge0d 12423 . . . 4 (𝑣𝑆 → 0 ≤ 𝑣)
54rgen 3145 . . 3 𝑣𝑆 0 ≤ 𝑣
6 sqrlem1.2 . . . 4 𝐵 = sup(𝑆, ℝ, < )
71, 6sqrlem3 14592 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣))
8 sqrlem5.3 . . . 4 𝑇 = {𝑦 ∣ ∃𝑎𝑆𝑏𝑆 𝑦 = (𝑎 · 𝑏)}
9 pm4.24 564 . . . . 5 (∀𝑣𝑆 0 ≤ 𝑣 ↔ (∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣))
1093anbi1i 1149 . . . 4 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) ↔ ((∀𝑣𝑆 0 ≤ 𝑣 ∧ ∀𝑣𝑆 0 ≤ 𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)))
118, 10supmullem2 11600 . . 3 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
125, 7, 7, 11mp3an2i 1457 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣))
131, 6sqrlem4 14593 . . . . . 6 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 ∈ ℝ+𝐵 ≤ 1))
14 rpre 12385 . . . . . . 7 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
1514adantr 481 . . . . . 6 ((𝐵 ∈ ℝ+𝐵 ≤ 1) → 𝐵 ∈ ℝ)
1613, 15syl 17 . . . . 5 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℝ)
1716recnd 10657 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → 𝐵 ∈ ℂ)
1817sqvald 13495 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = (𝐵 · 𝐵))
196, 6oveq12i 7157 . . . 4 (𝐵 · 𝐵) = (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < ))
208, 10supmul 11601 . . . . 5 ((∀𝑣𝑆 0 ≤ 𝑣 ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣) ∧ (𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑧𝑆 𝑧𝑣)) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
215, 7, 7, 20mp3an2i 1457 . . . 4 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (sup(𝑆, ℝ, < ) · sup(𝑆, ℝ, < )) = sup(𝑇, ℝ, < ))
2219, 21syl5eq 2865 . . 3 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵 · 𝐵) = sup(𝑇, ℝ, < ))
2318, 22eqtrd 2853 . 2 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → (𝐵↑2) = sup(𝑇, ℝ, < ))
2412, 23jca 512 1 ((𝐴 ∈ ℝ+𝐴 ≤ 1) → ((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑣 ∈ ℝ ∀𝑢𝑇 𝑢𝑣) ∧ (𝐵↑2) = sup(𝑇, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1079   = wceq 1528  wcel 2105  {cab 2796  wne 3013  wral 3135  wrex 3136  {crab 3139  wss 3933  c0 4288   class class class wbr 5057  (class class class)co 7145  supcsup 8892  cr 10524  0cc0 10525  1c1 10526   · cmul 10530   < clt 10663  cle 10664  2c2 11680  +crp 12377  cexp 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13358  df-exp 13418
This theorem is referenced by:  sqrlem6  14595
  Copyright terms: Public domain W3C validator